Spark 驱动程序堆内存问题
Posted
技术标签:
【中文标题】Spark 驱动程序堆内存问题【英文标题】:Spark Driver Heap Memory Issues 【发布时间】:2016-12-15 17:59:21 【问题描述】:我看到主节点上的 Java 堆慢慢用完的问题。下面是我创建的一个简单示例,它只会重复 200 次。使用下面的设置,master 在大约 1 小时内耗尽内存并出现以下错误:
16/12/15 17:55:46 INFO YarnSchedulerBackend$YarnDriverEndpoint: Launching task 97578 on executor id: 9 hostname: ip-xxx-xxx-xx-xx
#
# java.lang.OutOfMemoryError: Java heap space
# -XX:OnOutOfMemoryError="kill -9 %p"
# Executing /bin/sh -c "kill -9 20160"...
代码:
import org.apache.spark.sql.functions._
import org.apache.spark._
object MemTest
case class X(colval: Long, colname: Long, ID: Long)
def main(args: Array[String])
val conf = new SparkConf().setAppName("MemTest")
val spark = new SparkContext(conf)
val sc = org.apache.spark.sql.SQLContext.getOrCreate(spark)
import sc.implicits._;
for( a <- 1 to 200)
var df = spark.parallelize((1 to 5000000).map(x => X(x.toLong, x.toLong % 10, x.toLong / 10 ))).toDF()
df = df.groupBy("ID").pivot("colname").agg(max("colval"))
df.count
spark.stop()
我正在使用 m4.xlarge(4 个节点+1 个主节点)在 AWS emr-5.1.0 上运行。这是我的火花设置
"Classification": "spark-defaults",
"Properties":
"spark.dynamicAllocation.enabled": "false",
"spark.executor.instances": "16",
"spark.executor.memory": "2560m",
"spark.driver.memory": "768m",
"spark.executor.cores": "1"
,
"Classification": "spark",
"Properties":
"maximizeResourceAllocation": "false"
,
我使用 sbt 编译
name := "Simple Project"
version := "1.0"
scalaVersion := "2.11.7"
libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-core" % "2.0.2" % "provided",
"org.apache.spark" %% "spark-sql" % "2.0.2")
然后使用
运行它spark-submit --class MemTest target/scala-2.11/simple-project_2.11-1.0.jar
用jmap -histo
查看内存我看到java.lang.Long
和scala.Tuple2
不断增长。
【问题讨论】:
【参考方案1】:你确定集群上安装的spark版本是2.0.2吗?
或者,如果您的集群上有多个 Spark 安装,您确定您调用的是正确的 (2.0.2) spark-submit?
(很遗憾,我无法发表评论,所以这就是我将其发布为答案的原因)
【讨论】:
这是 Spark 2.0.1,因为这就是 emr-5.1.0。我会试试 emr-5.2.0。以上是关于Spark 驱动程序堆内存问题的主要内容,如果未能解决你的问题,请参考以下文章