打印背包物品(允许重复物品)

Posted

技术标签:

【中文标题】打印背包物品(允许重复物品)【英文标题】:Printing Knapsack items (Repetition of items allowed) 【发布时间】:2019-09-08 10:53:35 【问题描述】:

我实现了 2 种解决背包问题的方法,但我无法以一种方式打印选定的项目,而另一种则不能很好地工作,因为它错过了我的第一个项目值。 Baiscally,我的背包问题是将一个长度为 N 的条划分为长度为 1,2,....,N 的子条,其中每个子条具有不同的成本。

当然,只要不超过长度,就可以重复项目。 所以: 1)我有一个长度为 N 的条,可以分割。从 1 到 N 的每个部分都有一个价格相关。 2)背包找到最大利润,可以多次拿相同的物品。 3)打印背包选择的元素。

我的问题是: 1)在第一段代码中,我无法理解如何打印所选项目。 2)我尝试了矩阵方法,但我不明白如何设置允许重复项目的背包矩阵方程。

这是我的第一次尝试,这确实有效并给了我正确的答案,但我无法真正理解如何打印所选项目。

int *k = malloc(sizeof(int ) * lenght+1);
for( i = 0 ; i <= lenght; i++) k[i] = 0;

填充背包数组。

for(i = 0 ; i <= lenght ; i++)
    for(w = 0 ; w < lenght ; w++)
        if( bar[w] <= i)
            k[i] = searchmax( prices[w] + k[i-bar[w]] , k[i] );
         
    

这是我的第二种方法,它不起作用,但我更清楚如何打印之后的项目,因为它适用于经典背包。

int **k = malloc(sizeof(int*) * (lenght+1));
for(i=0;i<=lenght;i++) k[i] = malloc(sizeof(int)*(lenght+1));

for( i = 0 ; i <= lenght; i++)k[0][i]= 0;
for(i = 0 ; i <=lenght;i++) k[i][0]=0;

for(i=1;i<=lenght;i++)
    for(w=1;w<=lenght;w++)
        if(bar[i]<=w)
            printf("\nPrices: %d  Barlenght: %d" , prices[i], bar[i]);
            k[i][w]=searchmax(prices[i]+k[i][w-bar[i]], k[i-1][w]);
        
        else k[i][w] = k[i-1][w];

    

这组输入的结果:柱的长度:4

长度为 1 到 N 的子条的价格(在这种情况下 N 为 4)为:1、5、8、9。

应该是:利润:10,物品:2,2

【问题讨论】:

【参考方案1】:

仅当元素“保存在背包中”时才应打印该元素。在每次迭代中,您都会检查是将元素放入背包还是丢弃它。在您的代码中,您应该检查这一点:如果一个元素“保存在背包中”,请打印它及其重量,以及已经在背包中的其他值,并且在添加此元素时不超过容量背包。有几种方法可以做到这一点。我想到了这个:在执行该方法时,将所选值保存在背包中,为它的每个可能容量(如果它有容量 W,则必须将所选值存储在一个矩阵中,其中每一行 w表示一个值 0

代码

#include <iostream>
#include <vector>
#include <algorithm>
#include <stdexcept>
#include <string>


/**
* Responsible for dealing with the unbounded knapsack problem.
*/
class UnboundedKnapsack

    //-------------------------------------------------------------------------
    //      Attributes
    //-------------------------------------------------------------------------
    /**
    * Stores maximum value of the knapsack for a certain capacity.
    */
    std::vector<int> knapsack;

    /**
    * Stores elements that are part of the knapsack with a certain capacity.
    * <li><b>Line:</b> Knapsack capacity</li>
    * <li><b>Column:</b> Elements</li>
    */
    std::vector<std::vector<int> > selectedElements;

    /**
    * Stores maximum knapsack capacity.
    */
    int maximumCapacity;


public:
    //-------------------------------------------------------------------------
    //      Constructor
    //-------------------------------------------------------------------------
    UnboundedKnapsack()
    
        maximumCapacity = -1;
    


    //-------------------------------------------------------------------------
    //      Destructor
    //-------------------------------------------------------------------------
    ~UnboundedKnapsack()
    
        delete this;
    


    //-------------------------------------------------------------------------
    //      Methods
    //-------------------------------------------------------------------------
    /**
    * Unbounded knapsack allows to use one or more occurrences of an item.
    *
    * @param        w Weight of the elements
    * @param        v Value of the elements
    * @param        N Number of itens
    * @param        W Maximum weight capacity
    * @return       This object to allow chained calls
    */
    UnboundedKnapsack* knapsack_unbounded(std::vector<int>& w, std::vector<int>& v, int N, int W)
    
        // Stores the maximum value which can be reached with a certain capacity
        knapsack.clear();
        knapsack.resize(W + 1);

        maximumCapacity = W + 1;

        // Stores selected elements with a certain capacity
        selectedElements.resize(W + 1);

        // Initializes maximum value vector with zero
        for (int i = 0; i < W + 1; i++) 
            knapsack[i] = 0;
        

        // Computes the maximum value that can be reached for each capacity
        for (int capacity = 0; capacity < W + 1; capacity++) 
            // Goes through all the elements
            for (int n = 0; n < N; n++) 
                if (w[n] <= capacity) 
                    // max(knapsack[capacity], knapsack[capacity - w[n]] + v[n])
                    if (knapsack[capacity] <= knapsack[capacity - w[n]] + v[n]) 
                        knapsack[capacity] = knapsack[capacity - w[n]] + v[n];

                        // Stores selected elements
                        selectedElements[capacity].clear();
                        selectedElements[capacity].push_back(n + 1);

                        for (int elem : selectedElements[capacity - w[n]]) 
                            selectedElements[capacity].push_back(elem);
                        
                    
                
            
        

        return this;
    

    /**
    * Returns maximum value for a certain number of elements and a certain
    * capacity.
    *
    * @param        capacity Capacity of the knapsack
    * @return       Maximum possible value with capacity provided
    * @throws       std::invalid_argument If capacity provided is out of bounds
    */
    int getMaximumValue(int capacity)
    
        if (capacity < 0 || capacity >= maximumCapacity)
            throw std::invalid_argument("Capacity out of bounds");

        return knapsack[capacity];
    

    /**
    * Returns elements that belong to the knapsack with a certain capacity.
    *
    * @param        capacity Capacity of the knapsack
    * @return       Elements that are part of the knapsack with the capacity
    * provided
    * @throws       std::invalid_argument If capacity provided is out of bounds
    * @apiNote      Elements are referenced by their index + 1
    */
    std::vector<int>& getSelectedElements(int capacity)
    
        if (capacity < 0 || capacity >= maximumCapacity)
            throw std::invalid_argument("Capacity out of bounds");

        return selectedElements[capacity];
    

    /**
    * Returns elements that are part of the knapsack with a certain capacity.
    * This method will return a @link std::string with the following format:
    * <code>[elem1, elem2, elem3...]</code>
    *
    * @param        capacity Capacity of the knapsack
    * @return       Elements that are part of the knapsack with the capacity
    * provided
    * @apiNote      Elements are referenced by their index + 1
    */
    std::string selectedElements_toString(int capacity)
    
        std::string response = "[";

        for (int element : selectedElements[capacity]) 
            response.append(std::to_string(element));
            response.append(", ");
        

        // Removes last ", "
        response.pop_back();
        response.pop_back();

        response.append("]");

        return response;
    
;


//-------------------------------------------------------------------------
//      Main
//-------------------------------------------------------------------------
/**
* Example made based on this exercise:
* @link https://www.urionlinejudge.com.br/repository/UOJ_1487_en.html
*/
int main()

    UnboundedKnapsack* knapsack = new UnboundedKnapsack();
    int totalCapacity = 60, elements = 5;
    std::vector<int> elements_weight =  10, 20, 5, 50, 22 ;
    std::vector<int> elements_values =  30, 32, 4, 90, 45 ;

    knapsack->knapsack_unbounded(elements_weight, elements_values, elements, totalCapacity);

    std::cout << "Maximum value: "
        << knapsack->getMaximumValue(totalCapacity)
        << std::endl;
    std::cout << "Selected elements: "
        << knapsack->selectedElements_toString(totalCapacity)
        << std::endl;

    system("pause");

    return 0;

输出

Maximum value: 180
Selected elements: [1, 1, 1, 1, 1, 1]

我希望这会有所帮助。如果您有兴趣,我还实现了一个版本,显示与经典版本的背包一起存储的元素。可在此处获得: https://github.com/williamniemiec/algorithms/blob/master/Dynamic%20programming/knapsack/c%2B%2B/BoundedKnapsack.cpp

【讨论】:

以上是关于打印背包物品(允许重复物品)的主要内容,如果未能解决你的问题,请参考以下文章

蛮力背包打印输出

0-1背包问题的动态规划实现

背包九讲之二:完全背包问题:一个物品允许选多次

Re0:DP学习之路 01背包如何打印路径?

C++经典算法问题:背包问题(迭代+递归算法)!含源码示例

CodeForces - 1236B (简单组合数学)