0/1 背包 - 对 Wiki 伪代码的一些说明
Posted
技术标签:
【中文标题】0/1 背包 - 对 Wiki 伪代码的一些说明【英文标题】:0/1 Knapsack - A few clarification on Wiki's pseudocode 【发布时间】:2013-06-12 19:33:47 【问题描述】:这是 en.wikipedia 关于背包问题的文章中的代码:
// Input:
// Values (stored in array v)
// Weights (stored in array w)
// Number of distinct items (n)
// Knapsack capacity (W)
for w from 0 to W do
m[0, w] := 0
end for
for i from 1 to n do
for j from 0 to W do
if j >= w[i] then
m[i, j] := max(m[i-1, j], m[i-1, j-w[i]] + v[i])
else
m[i, j] := m[i-1, j]
end if
end for
end for
我有两点我疲惫的大脑无法解决。我敢肯定,它们很小,但我真的可以使用帮助。
•m[] 数组的大小是多少? m[n,W]?如果是,是忽略最后一行和最后一列的伪代码,因为它用零填充整个第一行(使用 m[0,w] := 0 的 for() 循环),然后从 1 循环到 n,和 0 到 W。例如,对于 3 个不同的项目 (n==3) 和容量为 4 (W==3),是 m[3,4] 还是 m[4,5]?
•在某处是否有更好的动态背包算法示例?
【问题讨论】:
【参考方案1】:数组的大小为 (n + 1) × (W + 1),因为值的范围从 [0, 0] 到 [n, W] (含)。
对网格的解释如下: position [k, w] 表示使用前 k 个项目可以得到的最大价值量(假设项目编号为 1, 2, ..., n)并且总重量不超过 w。
第一行完全设置为 0 的原因是因为 [0, w] 形式的任何条目都对应于使用前 0 个项目可以得到的最大值并且最多承载 w 权重。这始终为零,因为您永远无法通过不选择任何项目来获得任何价值。这对应于递归的基本情况。
第一个之后的行使用以下思想填充:如果您想尝试选择第 k 个项目,您首先需要确保您有能力握住它(这意味着 w 必须至少为 w [k])。如果你不能持有它,你最好的选择是充分利用前 k - 1 件受当前重量限制的物品(所以你最好取对应于 m[k - 1, w] 的值. 如果你能持有该项目,你的选择是要么不接受它(并且像以前一样,充分利用其他项目,产生 m[k - 1, w]),要么接受它并最大化剩余的剩余物品的承载能力。这会给你价值 v[k] + m[k - 1, w - w[k]]。
希望这会有所帮助!
【讨论】:
你是疲倦甜点中的绿洲,卡丽熙。【参考方案2】:我知道已经回答了,只是在c#中添加代码版本,仅供参考(对于简化的背包您可以参考:How do I solve the 'classic' knapsack algorithm recursively?):
版本 1. 使用动态编程求解(类似于 wiki) - 自下而上(表格方法)
第 2 版。 使用动态编程求解,但从上到下(记忆化 - 懒惰)
版本 3. 递归(只是递归解决方案,不使用重叠子问题或能够使用 DP 的最佳子结构属性)
第 4 版。蛮力(遍历所有组合)
参考:http://en.wikipedia.org/wiki/Knapsack_problem、How do I solve the 'classic' knapsack algorithm recursively?
表格 - DP - 版本 (O(nW) - 伪多项式) - O(nW) 内存 - 自下而上
public int Knapsack_0_1_DP_Tabular_Bottom_Up(int[] weights, int[] values, int maxWeight)
this.ValidataInput_Knapsack_0_1(weights, values, maxWeight);
int[][] DP_Memoization_Max_Value_Cache = new int[values.Length + 1][];
for (int i = 0; i <= values.Length; i++)
DP_Memoization_Max_Value_Cache[i] = new int[maxWeight + 1];
for (int j = 0; j <= maxWeight; j++)
DP_Memoization_Max_Value_Cache[i][j] = 0; //yes, its default -
/// f(i, w) = f(i-1, w) if Wi > w
/// Or, max (f(i-1, w), f(i-1, w-Wi) + Vi
/// Or 0 if i < 0
for(int i = 1; i<=values.Length; i++)
for(int w = 1; w <= maxWeight; w++)
//below code can be refined - intentional as i just want it
//look similar to other 2 versions (top_to_bottom_momoization
//and recursive_without_resuing_subproblem_solution
int maxValueWithoutIncludingCurrentItem =
DP_Memoization_Max_Value_Cache[i - 1][w];
if (weights[i - 1] > w)
DP_Memoization_Max_Value_Cache[i][w] = maxValueWithoutIncludingCurrentItem;
else
int maxValueByIncludingCurrentItem =
DP_Memoization_Max_Value_Cache[i - 1][w - weights[i - 1]]
+ values[i-1];
int overAllMax = maxValueWithoutIncludingCurrentItem;
if(maxValueByIncludingCurrentItem > overAllMax)
overAllMax = maxValueByIncludingCurrentItem;
DP_Memoization_Max_Value_Cache[i][w] = overAllMax;
return DP_Memoization_Max_Value_Cache[values.Length][maxWeight];
DP - 记忆 - 自上而下 - 懒惰评估
/// <summary>
/// f(i, w) = f(i-1, w) if Wi > w
/// Or, max (f(i-1, w), f(i-1, w-Wi) + Vi
/// Or 0 if i < 0
/// </summary>
int Knapsack_0_1_DP_Memoization_Top_To_Bottom_Lazy_Recursive(int[] weights, int[] values,
int index, int weight, int?[][] DP_Memoization_Max_Value_Cache)
if (index < 0)
return 0;
Debug.Assert(weight >= 0);
#if DEBUG
if ((index == 0) || (weight == 0))
Debug.Assert(DP_Memoization_Max_Value_Cache[index][weight] == 0);
#endif
//value is cached, so return
if(DP_Memoization_Max_Value_Cache[index][weight] != null)
return DP_Memoization_Max_Value_Cache[index][weight].Value;
Debug.Assert(index > 0);
Debug.Assert(weight > 0);
int maxValueWithoutIncludingCurrentItem = this.Knapsack_0_1_DP_Memoization_Top_To_Bottom_Lazy_Recursive
(weights, values, index - 1, weight, DP_Memoization_Max_Value_Cache);
if (weights[index-1] > weight)
DP_Memoization_Max_Value_Cache[index][weight] = maxValueWithoutIncludingCurrentItem;
//current item weight is more, so we cant include - so, just return
return maxValueWithoutIncludingCurrentItem;
int overallMaxValue = maxValueWithoutIncludingCurrentItem;
int maxValueIncludingCurrentItem = this.Knapsack_0_1_DP_Memoization_Top_To_Bottom_Lazy_Recursive
(weights, values, index - 1, weight - weights[index-1],
DP_Memoization_Max_Value_Cache) + values[index - 1];
if(maxValueIncludingCurrentItem > overallMaxValue)
overallMaxValue = maxValueIncludingCurrentItem;
DP_Memoization_Max_Value_Cache[index][weight] = overallMaxValue;
return overallMaxValue;
以及调用的公共方法(调用者的详细信息,请参阅下面的单元测试)
public int Knapsack_0_1_DP_Tabular_Bottom_Up(int[] weights, int[] values, int maxWeight)
this.ValidataInput_Knapsack_0_1(weights, values, maxWeight);
int[][] DP_Memoization_Max_Value_Cache = new int[values.Length + 1][];
for (int i = 0; i <= values.Length; i++)
DP_Memoization_Max_Value_Cache[i] = new int[maxWeight + 1];
for (int j = 0; j <= maxWeight; j++)
DP_Memoization_Max_Value_Cache[i][j] = 0; //yes, its default -
/// f(i, w) = f(i-1, w) if Wi > w
/// Or, max (f(i-1, w), f(i-1, w-Wi) + Vi
/// Or 0 if i < 0
for(int i = 1; i<=values.Length; i++)
for(int w = 1; w <= maxWeight; w++)
//below code can be refined - intentional as i just want it
//look similar to other 2 versions (top_to_bottom_momoization
//and recursive_without_resuing_subproblem_solution
int maxValueWithoutIncludingCurrentItem =
DP_Memoization_Max_Value_Cache[i - 1][w];
if (weights[i - 1] > w)
DP_Memoization_Max_Value_Cache[i][w] = maxValueWithoutIncludingCurrentItem;
else
int maxValueByIncludingCurrentItem =
DP_Memoization_Max_Value_Cache[i - 1][w - weights[i - 1]]
+ values[i-1];
int overAllMax = maxValueWithoutIncludingCurrentItem;
if(maxValueByIncludingCurrentItem > overAllMax)
overAllMax = maxValueByIncludingCurrentItem;
DP_Memoization_Max_Value_Cache[i][w] = overAllMax;
return DP_Memoization_Max_Value_Cache[values.Length][maxWeight];
递归 - 有 DP 子问题 - 但不重复使用重叠子问题(这应该描述如何更容易将递归版本更改为 DP 从上到下(记忆版本)
public int Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure(int[] weights, int[] values, int maxWeight)
this.ValidataInput_Knapsack_0_1(weights, values, maxWeight);
int v = this.Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure_Recursive(weights, values, index: weights.Length-1, weight: maxWeight);
return v;
/// <summary>
/// f(i, w) = f(i-1, w) if Wi > w
/// Or, max (f(i-1, w), f(i-1, w-Wi) + Vi
/// Or 0 if i < 0
/// </summary>
int Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure_Recursive(int[] weights, int[] values, int index, int weight)
if (index < 0)
return 0;
Debug.Assert(weight >= 0);
int maxValueWithoutIncludingCurrentItem = this.Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure_Recursive(weights,
values, index - 1, weight);
if(weights[index] > weight)
//current item weight is more, so we cant include - so, just return
return maxValueWithoutIncludingCurrentItem;
int overallMaxValue = maxValueWithoutIncludingCurrentItem;
int maxValueIncludingCurrentItem = this.Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure_Recursive(weights,
values, index - 1, weight - weights[index]) + values[index];
if(maxValueIncludingCurrentItem > overallMaxValue)
overallMaxValue = maxValueIncludingCurrentItem;
return overallMaxValue;
蛮力(遍历所有组合)
private int _maxValue = int.MinValue;
private int[] _valueIndices = null;
public void Knapsack_0_1_BruteForce_2_Power_N(int[] weights, int[] values, int maxWeight)
this.ValidataInput_Knapsack_0_1(weights, values, maxWeight);
this._maxValue = int.MinValue;
this._valueIndices = null;
this.Knapsack_0_1_BruteForce_2_Power_N_Rcursive(weights, values, maxWeight, 0, 0, 0, new List<int>());
private void Knapsack_0_1_BruteForce_2_Power_N_Rcursive(int[] weights, int[] values, int maxWeight, int index, int currentWeight, int currentValue, List<int> currentValueIndices)
if(currentWeight > maxWeight)
return;
if(currentValue > this._maxValue)
this._maxValue = currentValue;
this._valueIndices = currentValueIndices.ToArray();
if(index == weights.Length)
return;
Debug.Assert(index < weights.Length);
var w = weights[index];
var v = values[index];
//see if the current value, conributes to max value
currentValueIndices.Add(index);
Knapsack_0_1_BruteForce_2_Power_N_Rcursive(weights, values, maxWeight, index + 1, currentWeight + w,
currentValue + v, currentValueIndices);
currentValueIndices.Remove(index);
//see if current value, does not contribute to max value
Knapsack_0_1_BruteForce_2_Power_N_Rcursive(weights, values, maxWeight, index + 1, currentWeight, currentValue,
currentValueIndices);
单元测试 1
[TestMethod]
public void Knapsack_0_1_Tests()
int[] benefits = new int[] 60, 100, 120 ;
int[] weights = new int[] 10, 20, 30 ;
this.Knapsack_0_1_BruteForce_2_Power_N(weights, values: benefits, maxWeight: 50);
Assert.IsTrue(this._maxValue == 220);
int v = this.Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure(weights,
values: benefits, maxWeight: 50);
Assert.IsTrue(v == 220);
v = this.Knapsack_0_1_DP_Memoization_Top_To_Bottom_Lazy(weights,
values: benefits, maxWeight: 50);
Assert.IsTrue(v == 220);
v = this.Knapsack_0_1_DP_Tabular_Bottom_Up(weights,
values: benefits, maxWeight: 50);
Assert.IsTrue(v == 220);
benefits = new int[] 3, 4, 5, 8, 10 ;
weights = new int[] 2, 3, 4, 5, 9 ;
this.Knapsack_0_1_BruteForce_2_Power_N(weights, values: benefits, maxWeight: 20);
Assert.IsTrue(this._maxValue == 26);
v = this.Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure(weights, values: benefits,
maxWeight: 20);
Assert.IsTrue(v == 26);
v = this.Knapsack_0_1_DP_Memoization_Top_To_Bottom_Lazy(weights,
values: benefits, maxWeight: 20);
Assert.IsTrue(v == 26);
v = this.Knapsack_0_1_DP_Tabular_Bottom_Up(weights,
values: benefits, maxWeight: 20);
Assert.IsTrue(v == 26);
benefits = new int[] 3, 4, 5, 6;
weights = new int[] 2, 3, 4, 5 ;
this.Knapsack_0_1_BruteForce_2_Power_N(weights, values: benefits, maxWeight: 5);
Assert.IsTrue(this._maxValue == 7);
v = this.Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure(weights, values: benefits,
maxWeight: 5);
Assert.IsTrue(v == 7);
v = this.Knapsack_0_1_DP_Memoization_Top_To_Bottom_Lazy(weights,
values: benefits, maxWeight: 5);
Assert.IsTrue(v == 7);
v = this.Knapsack_0_1_DP_Tabular_Bottom_Up(weights,
values: benefits, maxWeight: 5);
Assert.IsTrue(v == 7);
单元测试 2
[TestMethod]
public void Knapsack_0_1_Brute_Force_Tests()
int[] benefits = new int[] 60, 100, 120 ;
int[] weights = new int[] 10, 20, 30 ;
this.Knapsack_0_1_BruteForce_2_Power_N(weights, values: benefits, maxWeight: 50);
Assert.IsTrue(this._maxValue == 220);
Assert.IsTrue(this._valueIndices.Contains(1));
Assert.IsTrue(this._valueIndices.Contains(2));
Assert.IsTrue(this._valueIndices.Length == 2);
this._maxValue = int.MinValue;
this._valueIndices = null;
benefits = new int[] 3, 4, 5, 8, 10 ;
weights = new int[] 2, 3, 4, 5, 9 ;
this.Knapsack_0_1_BruteForce_2_Power_N(weights, values: benefits, maxWeight: 20);
Assert.IsTrue(this._maxValue == 26);
Assert.IsTrue(this._valueIndices.Contains(0));
Assert.IsTrue(this._valueIndices.Contains(2));
Assert.IsTrue(this._valueIndices.Contains(3));
Assert.IsTrue(this._valueIndices.Contains(4));
Assert.IsTrue(this._valueIndices.Length == 4);
【讨论】:
以上是关于0/1 背包 - 对 Wiki 伪代码的一些说明的主要内容,如果未能解决你的问题,请参考以下文章
用回溯法做0-1背包问题,这两行(程序中标注)是干嘛?为啥又要减?
c_cpp 以递归方式做河内塔问题的基准.n = 20来自维基百科的伪代码:https://zh.wikipedia.org/wiki/汉诺塔