训练步骤未在 pytorch 闪电中执行
Posted
技术标签:
【中文标题】训练步骤未在 pytorch 闪电中执行【英文标题】:Training step not executing in pytorch lightning 【发布时间】:2021-06-19 16:47:37 【问题描述】:我正在努力微调 t5 模型以总结亚马逊评论。我在这里学习本教程:https://towardsdatascience.com/fine-tuning-a-t5-transformer-for-any-summarization-task-82334c64c81
我注意到我的代码中的 training_step 从未被执行,因为训练损失在整个 epoch 中保持“NaN”。但是,validation_step 计算得很好。
我已经确认数据中没有空字符串,并尝试了多个批量大小。
这是错误
RuntimeError Traceback (most recent call last)
<ipython-input-53-45d4afebefac> in <module>()
----> 1 trainer.fit(model)
8 frames
<ipython-input-46-00fddffa2209> in training_epoch_end(self, outputs)
134 print("OUTPUTS")
135 print(outputs)
--> 136 avg_train_loss = torch.stack([x["loss"] for x in outputs]).mean()
137 tensorboard_logs = "avg_train_loss": avg_train_loss
138 return "avg_train_loss": avg_train_loss, "log": tensorboard_logs, 'progress_bar': tensorboard_logs
RuntimeError: stack expects a non-empty TensorList
通过在 training_step 函数中添加打印语句,我发现 training_step 函数永远不会被执行。
下面是我的 T5FineTuner 类的代码(对不起,我不能再简洁了):
class T5FineTuner(pl.LightningModule):
def __init__(self, hparams):
super(T5FineTuner, self).__init__()
self.hparams = hparams
self.model = T5ForConditionalGeneration.from_pretrained(hparams.model_name_or_path)
self.tokenizer = T5Tokenizer.from_pretrained(hparams.tokenizer_name_or_path)
self.rouge_metric = load_metric('rouge')
if self.hparams.freeze_embeds:
self.freeze_embeds()
if self.hparams.freeze_encoder:
self.freeze_params(self.model.get_encoder())
assert_all_frozen(self.model.get_encoder())
n_observations_per_split =
"train": self.hparams.n_train,
"validation": self.hparams.n_val,
"test": self.hparams.n_test,
self.n_obs = k: v if v >= 0 else None for k, v in n_observations_per_split.items()
def freeze_params(self, model):
for par in model.parameters():
par.requires_grad = False
def freeze_embeds(self):
"""Freeze token embeddings and positional embeddings for bart, just token embeddings for t5."""
try:
self.freeze_params(self.model.model.shared)
for d in [self.model.model.encoder, self.model.model.decoder]:
freeze_params(d.embed_positions)
freeze_params(d.embed_tokens)
except AttributeError:
self.freeze_params(self.model.shared)
for d in [self.model.encoder, self.model.decoder]:
self.freeze_params(d.embed_tokens)
def lmap(self, f, x):
"""list(map(f, x))"""
return list(map(f, x))
def is_logger(self):
return True
def parse_score(self, result):
return k: round(v.mid.fmeasure * 100, 4) for k, v in result.items()
def forward(
self, input_ids, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, labels=None
):
return self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
labels=labels,
)
def _step(self, batch):
labels = batch["target_ids"]
labels[labels[:, :] == self.tokenizer.pad_token_id] = -100
# print(labels)
outputs = self(
input_ids=batch["source_ids"],
attention_mask=batch["source_mask"],
labels=labels,
decoder_attention_mask=batch['target_mask']
)
# print(outputs)
loss = outputs[0]
return loss
def ids_to_clean_text(self, generated_ids):
gen_text = self.tokenizer.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
return self.lmap(str.strip, gen_text)
def _generative_step(self, batch) :
t0 = time.time()
generated_ids = self.model.generate(
batch["source_ids"],
attention_mask=batch["source_mask"],
use_cache=True,
decoder_attention_mask=batch['target_mask'],
max_length=150,
num_beams=2,
repetition_penalty=2.5,
length_penalty=1.0,
early_stopping=False,
)
preds = self.ids_to_clean_text(generated_ids)
target = self.ids_to_clean_text(batch["target_ids"])
gen_time = (time.time() - t0) / batch["source_ids"].shape[0]
loss = self._step(batch)
# print("LOSS _generative_step")
# print(loss)
base_metrics = 'val_loss': loss
# rouge: Dict = self.calc_generative_metrics(preds, target)
summ_len = np.mean(self.lmap(len, generated_ids))
base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target)
self.rouge_metric.add_batch(preds, target)
# rouge_results = self.rouge_metric.compute()
# rouge_dict = self.parse_score(rouge_results)
# base_metrics.update(rouge1=rouge_dict['rouge1'], rougeL=rouge_dict['rougeL'])
return base_metrics
def training_step(self, batch, batch_idx):
print("training_step")
print(batch)
loss = self._step(batch)
tensorboard_logs = "train_loss": loss
print("LOSS")
print(loss)
return "loss": loss, "log": tensorboard_logs
def training_epoch_end(self, outputs):
print("OUTPUTS")
print(outputs)
avg_train_loss = torch.stack([x["loss"] for x in outputs]).mean()
tensorboard_logs = "avg_train_loss": avg_train_loss
return "avg_train_loss": avg_train_loss, "log": tensorboard_logs, 'progress_bar': tensorboard_logs
def validation_step(self, batch, batch_idx):
print("validation_step")
return self._generative_step(batch)
def validation_epoch_end(self, outputs):
avg_loss = torch.stack([x["val_loss"] for x in outputs]).mean()
tensorboard_logs = "val_loss": avg_loss
rouge_results = self.rouge_metric.compute()
rouge_dict = self.parse_score(rouge_results)
tensorboard_logs.update(rouge1=rouge_dict['rouge1'], rougeL=rouge_dict['rougeL'])
## Clear out the lists for next epoch
self.target_gen= []
self.prediction_gen=[]
return "avg_val_loss": avg_loss,
"rouge1" : rouge_results['rouge1'],
"rougeL" : rouge_results['rougeL'],
"log": tensorboard_logs, 'progress_bar': tensorboard_logs
def configure_optimizers(self):
"Prepare optimizer and schedule (linear warmup and decay)"
model = self.model
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": self.hparams.weight_decay,
,
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
,
]
optimizer = AdamW(optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon)
self.opt = optimizer
return [optimizer]
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None, using_native_amp=False, optimizer_closure=None, on_tpu=None, using_lbfgs=None):
# if self.trainer.use_tpu:
# xm.optimizer_step(optimizer)
# else:
optimizer.step()
optimizer.zero_grad()
self.lr_scheduler.step()
def get_tqdm_dict(self):
tqdm_dict = "loss": ":.3f".format(self.trainer.avg_loss), "lr": self.lr_scheduler.get_last_lr()[-1]
return tqdm_dict
def train_dataloader(self):
print("train_dataloader")
n_samples = self.n_obs['train']
print(n_samples)
dataloader = DataLoader(train_dataset, batch_size=self.hparams.train_batch_size, num_workers=4)
print(len(dataloader.dataset))
print(self.hparams.train_batch_size * max(1, self.hparams.n_gpu))
print(self.hparams.gradient_accumulation_steps)
print(float(self.hparams.num_train_epochs))
t_total = (
(len(dataloader.dataset) // (self.hparams.train_batch_size * max(1, self.hparams.n_gpu)))
# // self.hparams.gradient_accumulation_steps
* float(self.hparams.num_train_epochs)
)
print(t_total)
scheduler = get_linear_schedule_with_warmup(
self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=t_total
)
self.lr_scheduler = scheduler
return dataloader
def val_dataloader(self):
n_samples = self.n_obs['validation']
# validation_dataset = get_dataset(tokenizer=self.tokenizer, type_path="validation", num_samples=n_samples, args=self.hparams)
return DataLoader(validation_dataset, batch_size=self.hparams.eval_batch_size, num_workers=4)
def test_dataloader(self):
n_samples = self.n_obs['test']
# test_dataset = get_dataset(tokenizer=self.tokenizer, type_path="test", num_samples=n_samples, args=self.hparams)
return DataLoader(test_dataset, batch_size=self.hparams.test_batch_size, num_workers=4)
以下是我的参数:
args_dict = dict(
output_dir="", # path to save the checkpoints
model_name_or_path='t5-small',
tokenizer_name_or_path='t5-small',
max_input_length=512,
max_output_length=150,
freeze_encoder=False,
freeze_embeds=False,
learning_rate=3e-4,
weight_decay=0.0,
adam_epsilon=1e-8,
warmup_steps=0,
train_batch_size=20,
eval_batch_size=20,
num_train_epochs=2,
gradient_accumulation_steps=8,
n_gpu=1,
resume_from_checkpoint=None,
val_check_interval = 0.05,
n_val=1000,
n_train=-1,
n_test=-1,
early_stop_callback=False,
fp_16=False, # if you want to enable 16-bit training then install apex and set this to true
opt_level='O1', # you can find out more on optimisation levels here https://nvidia.github.io/apex/amp.html#opt-levels-and-properties
max_grad_norm=1.0, # if you enable 16-bit training then set this to a sensible value, 0.5 is a good default
seed=42,
)
【问题讨论】:
嘿,请问有什么更新吗?我遇到了同样的问题 【参考方案1】:看来这段代码已经过时了。造成这种冲突的是optimizer_step()
方法。我刚刚在下面评论了这整个部分,它对我有用。如果你想在这个函数中做任何自定义逻辑,最好参考GitHub上的最新代码。
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None, using_native_amp=False,on_tpu=None,using_lbfgs=None, optimizer_closure=None):
if self.trainer.use_tpu:
xm.optimizer_step(optimizer)
else:
optimizer.step(closure=optimizer_closure)
optimizer.zero_grad()
self.lr_scheduler.step()
【讨论】:
以上是关于训练步骤未在 pytorch 闪电中执行的主要内容,如果未能解决你的问题,请参考以下文章