使用带有 DQN 算法的张量板
Posted
技术标签:
【中文标题】使用带有 DQN 算法的张量板【英文标题】:Using tensorboard with a DQN algorithm 【发布时间】:2020-12-04 02:09:43 【问题描述】:对于强化学习,我读到张量板并不理想,因为它提供了每集和/或步骤的输入。由于在强化学习中有数千个步骤,它并没有为我们提供内容的概述。我在这里看到了这个修改过的张量板类:https://pythonprogramming.net/deep-q-learning-dqn-reinforcement-learning-python-tutorial/
班级:
class ModifiedTensorBoard(TensorBoard):
# Overriding init to set initial step and writer (we want one log file for all .fit() calls)
def __init__(self, name, **kwargs):
super().__init__(**kwargs)
self.step = 1
self.writer = tf.summary.create_file_writer(self.log_dir)
self._log_write_dir = os.path.join(self.log_dir, name)
# Overriding this method to stop creating default log writer
def set_model(self, model):
pass
# Overrided, saves logs with our step number
# (otherwise every .fit() will start writing from 0th step)
def on_epoch_end(self, epoch, logs=None):
self.update_stats(**logs)
# Overrided
# We train for one batch only, no need to save anything at epoch end
def on_batch_end(self, batch, logs=None):
pass
# Overrided, so won't close writer
def on_train_end(self, _):
pass
def on_train_batch_end(self, batch, logs=None):
pass
# Custom method for saving own metrics
# Creates writer, writes custom metrics and closes writer
def update_stats(self, **stats):
self._write_logs(stats, self.step)
def _write_logs(self, logs, index):
with self.writer.as_default():
for name, value in logs.items():
tf.summary.scalar(name, value, step=index)
self.step += 1
self.writer.flush()
我想让它与这个层一起工作:
n_actions = env.action_space.n
input_dim = env.observation_space.n
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(20, input_dim = input_dim , activation = 'relu'))#32
model.add(tf.keras.layers.Dense(10, activation = 'relu'))#10
model.add(tf.keras.layers.Dense(n_actions, activation = 'linear'))
model.compile(optimizer=tf.keras.optimizers.Adam(), loss = 'mse')
但我还没有让它工作。任何曾经使用过 tensorboard 的人,你知道如何设置它吗?非常感谢任何见解。
【问题讨论】:
【参考方案1】:我总是在训练 RL 算法期间使用 tensorboard,而无需像上面那样修改任何代码。 只需启动您的作家:
writer = tf.summary.create_file_writer(logdir=log_folder)
开始你的代码:
with writer.as_default():
... do everythng indented inside here
例如如果您想每 100 步将奖励或第一层的权重保存到 tensorboard,只需执行以下操作:
if step % 100 = 0:
tf.summary.scalar(name="reward", data=reward, step=step)
dqn_variable = model.trainable_variables
tf.summary.histogram(name="dqn_variables", data=tf.convert_to_tensor(dqn_variable[0]), step=step)
writer.flush()
这应该可以解决问题:)
【讨论】:
以上是关于使用带有 DQN 算法的张量板的主要内容,如果未能解决你的问题,请参考以下文章