在python中计算每五秒的平均值
Posted
技术标签:
【中文标题】在python中计算每五秒的平均值【英文标题】:compute the average of values for every five seconds in python 【发布时间】:2021-12-16 02:32:43 【问题描述】:我有一个像下面这样的数据集,它的时间列是基于毫秒的。
pid_col ,timestamp_col ,value_col
31,2019-03-29 07:14:56.999999756,0.0
31,2019-03-29 07:14:57.250000,0.614595
31,2019-03-29 07:14:57.500000,0.678615
31,2019-03-29 07:14:57.750000,0.687578
31,2019-03-29 07:14:58.000000244,0.559804
31,2019-03-29 07:14:58.250000,0.522672
31,2019-03-29 07:14:58.499999512,0.51627
31,2019-03-29 07:14:58.750000,0.51627
31,2019-03-29 07:14:59.000000244,0.517551
31,2019-03-29 07:14:59.250000,0.51627
31,2019-03-29 07:14:59.500000244,0.509868
31,2019-03-29 07:14:59.750000488,0.513709
31,2019-03-29 07:15:00,0.513709
31,2019-03-29 07:15:00.249999512,0.518831
31,2019-03-29 07:15:00.500000,0.531635
我如何计算每 5 秒的平均值?对于这个数据集,我应该每 5 秒精确计算一次值的平均值...我的意思是前 5 秒的值应该在 7:14:56 之间计算直到 7:15:01 等每 5 秒一次。这是我的代码:
col_list = ["timestamp", "pid","value"]
df = read_csv("data.csv", usecols=col_list)
df['timestamp'] = to_datetime(df['timestamp'], unit='ms')
df = df.groupby(['pid', Grouper(freq='5S', key='timestamp')], as_index=False) \
.agg('timestamp': 'first', 'value': 'mean')
感谢您的帮助
【问题讨论】:
【参考方案1】:有一个很好的库叫做datetime
,它能够在日期之间进行操作。例如:
from datetime import datetime, timedelta
# datetime(year, month, day, hour, minute, second, microsecond)
time0 = datetime(2019, 3, 29, 7, 14, 57, 500000)
print(time0)
fiveseconds = timedelta(seconds=5)
print(fiveseconds)
time1 = time0 + fiveseconds
print(time1)
给出输出
2019-03-29 07:14:57.500000
0:00:05
2019-03-29 07:15:02.500000
然后你可以比较一下:
from datetime import datetime, timedelta
time0 = datetime(2019, 3, 29, 7, 14, 57, 500000)
fourseconds = timedelta(seconds=4)
fiveseconds = timedelta(seconds=5)
sixseconds = timedelta(seconds=6)
time1 = time0 + fiveseconds
print(time1 < (time0 + fourseconds)) # False
print(time1 < (time0 + sixseconds)) # True
所以,对于你的问题:
from datetime import datetime, timedelta
from numpy import floor
def convert(timestr):
"""
It receives a string, like ""2019-03-29 07:14:57.250000"
And returns a datetime instance
"""
date = timestr.split(" ")
year, month, day = date[0].split("-")
year = int(year)
month = int(month)
day = int(day)
hour, minute, second = date[1].split(":")
hour = int(hour)
minute = int(minute)
intsecond = int(second.split(".")[0])
if "." in second:
microsecond = int(floor(1e+6 * float("0." + second.split(".")[1])))
else:
microsecond = 0
return datetime(year, month, day, hour, minute, intsecond, microsecond)
listtimes = ["2019-03-29 07:14:56.999999756",
"2019-03-29 07:14:57.250000",
"2019-03-29 07:14:57.500000",
"2019-03-29 07:14:57.750000",
"2019-03-29 07:14:58.000000244",
"2019-03-29 07:14:58.250000",
"2019-03-29 07:14:58.499999512",
"2019-03-29 07:14:58.750000",
"2019-03-29 07:14:59.000000244",
"2019-03-29 07:14:59.250000",
"2019-03-29 07:14:59.500000244",
"2019-03-29 07:14:59.750000488",
"2019-03-29 07:15:00",
"2019-03-29 07:15:00.249999512",
"2019-03-29 07:15:00.500000"]
listvalues = [0.0,
0.614595,
0.678615,
0.687578,
0.559804,
0.522672,
0.51627,
0.51627,
0.517551,
0.51627,
0.509868,
0.513709,
0.513709,
0.518831,
0.531635]
dt = timedelta(seconds=5)
averagevalues = []
time0 = convert(listtimes[0])
time1 = time0 + dt
counter = 0
mysum = 0
for i, v in enumerate(listvalues):
if convert(listtimes[i]) >= time1:
averagevalues.append(mysum / counter)
counter = 0
mysum = 0
time1 += dt
counter += 1
mysum += v
if counter != 0:
averagevalues.append(mysum / counter)
print(averagevalues)
给出结果
[0.5144918]
因此,如果您有更大的值列表和更大的时间,列表averagevalues
将分组每个5 seconds
的平均值。在这个例子中,所有时间都在2019-03-29 07:14:56
和"2019-03-29 07:15:01
之间,所以我们在averagevalues
中只有一个值
【讨论】:
以上是关于在python中计算每五秒的平均值的主要内容,如果未能解决你的问题,请参考以下文章
定义一个含有30个整型元素的数组,按顺序分别赋予从2开始的偶数;然后按顺序每五个数求出一个平均值,放在另一个数组中并输出