气流:每个任务运行大量实例时需要建议
Posted
技术标签:
【中文标题】气流:每个任务运行大量实例时需要建议【英文标题】:Airflow : need advices when running a lot of instances per task 【发布时间】:2017-07-24 16:46:42 【问题描述】:这是我在 Stack 上的第一篇文章,是关于 Airflow 的。我需要实现一个 DAG,它将:
1/ 从 API 下载文件
2/ 将它们上传到 Google Cloud Storage
3/ 将它们插入 BigQuery
问题是第 1 步涉及大约 170 个要调用的帐户。如果在下载过程中出现任何错误,我希望我的 DAG 从异常结束的步骤中自动重试。因此,我在我的任务之上实现了一个循环,例如:
dag = DAG('my_dag', default_args=DEFAULT_ARGS)
for account in accounts:
t1 = PythonOperator(task_id='download_file_' + account['id'],
python_callable=download_files(account),
dag=my_dag)
t2 = FileToGoogleCloudStorageOperator(task_id='upload_file_' + account['id'],
google_cloud_storage_conn_id = 'gcs_my_conn',
src = 'file_' + account['id'] + '.json',
bucket = 'my_bucket',
dag=my_dag)
t3 = GoogleCloudStorageToBigQueryOperator(task_id='insert_bq',
bucket = 'my_bucket',
google_cloud_storage_conn_id = 'gcs_my_conn',
bigquery_conn_id = 'bq_my_conn',
src = 'file_' + account['id'],
destination_project_dataset_table = 'my-project:my-dataset.my-table',
source_format = 'NEWLINE_DELIMITED_JSON',
dag=my_dag)
t2.set_upstream(t1)
t3.set_upstream(t2)
所以在 UI 级别,每个任务显示我有大约 170 个实例。当我手动运行 DAG 时,就我所见,Airflow 什么也没做。 DAG 不会初始化或排队任何任务实例。我想这是由于涉及的实例数量,但我不知道如何解决这个问题。
我应该如何管理这么多任务实例?
谢谢,
亚历克斯
【问题讨论】:
嗨,AlexLng,你的 DAG 并发设置是什么,听起来你希望一次只允许运行 1 个任务。 嗨@Chengzhi,是的,这正是我要找的。我不能对我的 API 调用使用并行性,因为我会被提供商拒绝。我只是默认保留了并发设置,因为它使用的是 SequentialExecutor(应该一次运行一个任务实例)。 您好,承志,您有什么建议吗? 嗨,Alex,你能发布一下你的 DAG default_arg 是什么样子的吗?您可以通过在 python 运算符中添加参数 retries 来处理重试部分。 承志,我的 DAG default_arg 长这样:`DEFAULT_ARGS = 'owner': 'airflow', 'depends_on_past': False, 'start_date': datetime.datetime(2017, 7, 25), 'email': ['myemail'], 'email_on_failure': False, 'email_on_retry': False, 'retries': 2, 'retry_delay': datetime.timedelta(minutes=2) `你能解释一下你是什么吗'重新考虑这个重试参数?使用我当前的设置,重试将从头开始每个任务,这将导致我的 BigQuery 表中出现重复。 【参考方案1】:您目前如何运行气流?你确定airflow scheduler
正在运行吗?
您也可以运行airflow list_dags
以确保可以编译dag。如果您使用 Celery 运行气流,则应注意在所有运行气流的节点上使用 list_dags
显示您的 dag。
【讨论】:
嗨 Matthijs,是的,调度程序正在运行,并且 list_dags 正确显示了我的 dag。我现在正在使用 SequentialExecutor。【参考方案2】:Alex,在这里发帖会更容易,我看到你有 DEFAULT_ARGS 重试,在 DAG 级别,你也可以在任务级别设置重试。它在 BaseOperator 中,因为所有 Operator 都会继承 BaseOperator 然后你可以使用它,你可以在这里找到更多细节:https://github.com/apache/incubator-airflow/blob/master/airflow/operators/python_operator.py 和 https://github.com/apache/incubator-airflow/blob/master/airflow/models.py#L1864,如果你在模型中检查 BaseOperator,它有 retries
和 retry_delay
,你可以这样做:
t1 = PythonOperator(task_id='download_file_' + account['id'],
python_callable=download_files(account),
retries=3,
retry_delay=timedelta(seconds=300),
dag=my_dag)
【讨论】:
以上是关于气流:每个任务运行大量实例时需要建议的主要内容,如果未能解决你的问题,请参考以下文章