Apriori算法解释

Posted

技术标签:

【中文标题】Apriori算法解释【英文标题】:Apriori algorithm explanation 【发布时间】:2011-05-12 15:37:42 【问题描述】:

我在 Internet 上找到了 Apriori 算法的实现,但其中有些东西我无法理解。希望有人能帮帮我。

# region----- Apriori-gen
//Generates Candidate Itemsets
static ArrayList AprioriGen (ArrayList L)

    ArrayList Lk = new ArrayList ();    //List to store generated Candidate Itemsets
    Regex r = new Regex (",");
    for (int i = 0 ; i <L.Count ; i++)
    
        string [] subL1 = r.Split (L [i]. ToString ());
        for (int j = i+1 ; j <L.Count ; j++)
        
            string [] subL2 = r.Split (L [j]. ToString ());
            // Compare two items in L, and set them in temp
            string temp = L [j]. ToString ();   //store two key sets
            for (int m = 0; m <subL1.Length; m++)
            
                bool subL1mInsubL2 = false;
                for (int n = 0; n <subL2.Length; n++)
                
                    if (subL1 [m] == subL2 [n]) subL1mInsubL2 = true;
                
                if (subL1mInsubL2 == false) temp = temp + "," + subL1 [m];
            

            // If temp contains the entry for L in the (itemset size +1)
            //and the focus is not with the candidates seeking the same items set temp
            string [] subTemp = r.Split (temp);
            if (subTemp.Length == subL1.Length + 1)
            
                bool isExists = false;
                for (int m = 0; m <Lk.Count; m++)
                
                    bool isContained = true;
                    for (int n = 0; n <subTemp.Length; n++)
                    
                        if (!Lk[m].ToString().Contains(subTemp [n]) ) isContained = false;
                    
                    if (isContained == true) isExists = true;
                
                if (isExists == false) Lk.Add(temp);
            
        
    
    return Lk;

# endregion----- Apriori-gen

现在我知道了 Apriori Gen 过程,我们通过将项集连接在一起来将它们变成更大的项集。但我看不出这是如何在前面的代码中实现的。为什么我们使用 temp? isExists 和 isContained 如何帮助我们?这两部分代码到底发生了什么?

【问题讨论】:

【参考方案1】:

首先,有两个循环:

for (int i = 0 ; i

这些循环用于比较给定大小的每对项集。关于这个 Apriori 实现,我注意到的第一件事是它效率不高,因为如果项集是按词法排序的,那么您就不需要相互比较每个项集。你可以提前停下来。但是这段代码没有这个优化。

我在这段代码中看到的第二个大问题是候选对象存储为字符串。将其存储为整数数组会更有效。将项目集存储为包含“,”的字符串并将它们拆分为单独的数字是一个非常糟糕的设计决策,这将浪费内存和执行时间。对于数据挖掘算法,实现应该尽可能高效。在我看来,这意味着您正在查看的代码是由新手编写的。

关于您的问题,变量“temp”用于存储新候选人。提醒一下,一个候选项是两个项目集的串联。要组合两个项目集,您需要检查它们是否共享除一个之外的所有项目。例如,如果您有两个项目集 ABC 和 ABD,这两个项目集将生成一个新的候选,即 ABCD。但是如果两个项集有多个不同的项,则不应将它们合并。这就是您向我展示的代码正在尝试做的事情。

如果你想看一些高效的 Apriori 实现,可以查看我的website (http://www.philippe-fournier-viger.com/spmf/),我提供了一些高效的 Java 实现。如果您想要一些高效的 c++ 实现,请查看:http://fimi.ua.ac.be/src/。

【讨论】:

【参考方案2】:

描述:Apriori 算法的简单 Python 实现

用法:

$python apriori.py -f DATASET.csv -s minSupport  -c minConfidence

$python apriori.py -f DATASET.csv -s 0.15 -c 0.6
import sys

from itertools import chain, combinations
from collections import defaultdict
from optparse import OptionParser


def subsets(arr):
    """ Returns non empty subsets of arr"""
    return chain(*[combinations(arr, i + 1) for i, a in enumerate(arr)])


def returnItemsWithMinSupport(itemSet, transactionList, minSupport, freqSet):
        """calculates the support for items in the itemSet and returns a subset
       of the itemSet each of whose elements satisfies the minimum support"""
        _itemSet = set()
        localSet = defaultdict(int)

        for item in itemSet:
                for transaction in transactionList:
                        if item.issubset(transaction):
                                freqSet[item] += 1
                                localSet[item] += 1

        for item, count in localSet.items():
                support = float(count)/len(transactionList)

                if support >= minSupport:
                        _itemSet.add(item)

        return _itemSet


def joinSet(itemSet, length):
        """Join a set with itself and returns the n-element itemsets"""
        return set([i.union(j) for i in itemSet for j in itemSet if len(i.union(j)) == length])


def getItemSetTransactionList(data_iterator):
    transactionList = list()
    itemSet = set()
    for record in data_iterator:
        transaction = frozenset(record)
        transactionList.append(transaction)
        for item in transaction:
            itemSet.add(frozenset([item]))              # Generate 1-itemSets
    return itemSet, transactionList


def runApriori(data_iter, minSupport, minConfidence):
    """
    run the apriori algorithm. data_iter is a record iterator
    Return both:
     - items (tuple, support)
     - rules ((pretuple, posttuple), confidence)
    """
    itemSet, transactionList = getItemSetTransactionList(data_iter)

    freqSet = defaultdict(int)
    largeSet = dict()
    # Global dictionary which stores (key=n-itemSets,value=support)
    # which satisfy minSupport

    assocRules = dict()
    # Dictionary which stores Association Rules

    oneCSet = returnItemsWithMinSupport(itemSet,
                                        transactionList,
                                        minSupport,
                                        freqSet)

    currentLSet = oneCSet
    k = 2
    while(currentLSet != set([])):
        largeSet[k-1] = currentLSet
        currentLSet = joinSet(currentLSet, k)
        currentCSet = returnItemsWithMinSupport(currentLSet,
                                                transactionList,
                                                minSupport,
                                                freqSet)
        currentLSet = currentCSet
        k = k + 1

    def getSupport(item):
            """local function which Returns the support of an item"""
            return float(freqSet[item])/len(transactionList)

    toRetItems = []
    for key, value in largeSet.items():
        toRetItems.extend([(tuple(item), getSupport(item))
                           for item in value])

    toRetRules = []
    for key, value in largeSet.items()[1:]:
        for item in value:
            _subsets = map(frozenset, [x for x in subsets(item)])
            for element in _subsets:
                remain = item.difference(element)
                if len(remain) > 0:
                    confidence = getSupport(item)/getSupport(element)
                    if confidence >= minConfidence:
                        toRetRules.append(((tuple(element), tuple(remain)),
                                           confidence))
    return toRetItems, toRetRules


def printResults(items, rules):
    """prints the generated itemsets sorted by support and the confidence rules sorted by confidence"""
    for item, support in sorted(items, key=lambda (item, support): support):
        print "item: %s , %.3f" % (str(item), support)
    print "\n------------------------ RULES:"
    for rule, confidence in sorted(rules, key=lambda (rule, confidence): confidence):
        pre, post = rule
        print "Rule: %s ==> %s , %.3f" % (str(pre), str(post), confidence)


def dataFromFile(fname):
        """Function which reads from the file and yields a generator"""
        file_iter = open(fname, 'rU')
        for line in file_iter:
                line = line.strip().rstrip(',')                         # Remove trailing comma
                record = frozenset(line.split(','))
                yield record


if __name__ == "__main__":

    optparser = OptionParser()
    optparser.add_option('-f', '--inputFile',
                         dest='input',
                         help='filename containing csv',
                         default=None)
    optparser.add_option('-s', '--minSupport',
                         dest='minS',
                         help='minimum support value',
                         default=0.15,
                         type='float')
    optparser.add_option('-c', '--minConfidence',
                         dest='minC',
                         help='minimum confidence value',
                         default=0.6,
                         type='float')

    (options, args) = optparser.parse_args()

    inFile = None
    if options.input is None:
            inFile = sys.stdin
    elif options.input is not None:
            inFile = dataFromFile(options.input)
    else:
            print 'No dataset filename specified, system with exit\n'
            sys.exit('System will exit')

    minSupport = options.minS
    minConfidence = options.minC

    items, rules = runApriori(inFile, minSupport, minConfidence)

    printResults(items, rules)

【讨论】:

以上是关于Apriori算法解释的主要内容,如果未能解决你的问题,请参考以下文章

频繁项集和关联规则 - Apriori 算法

[机器学习] Apriori算法

r apriori算法结果怎么看

Apriori 算法 理论

第九章 数据关联规则分析算法——基于Apriori算法的关联项分析

关联规则挖掘算法Apriori算法