如何通过浏览器从网络摄像头获取实时流视频详细信息到 python?

Posted

技术标签:

【中文标题】如何通过浏览器从网络摄像头获取实时流视频详细信息到 python?【英文标题】:How to fetch live stream video details from webcam via browser to python? 【发布时间】:2019-02-19 02:11:58 【问题描述】:

我正在使用 python、tensorflow、opencv 和 usbcamera 从实时流视频中检测面部和情绪。 它通过本地终端正常工作。我尝试通过浏览器运行网络摄像头。 如何通过 webrtc 将视频流发送到 python。 是否可以使用python逐帧获取webrtc结果,因为我想在这里做一些处理。

【问题讨论】:

如果您专注于 ML 的浏览器实现,我建议您使用他们的 javascript 实现。 Tensorflow.js 和 Keras.js 可用,您甚至可以在 tf.js 中使用经过 Python 训练的模型。在这种方法中,所有处理都在客户端机器上进行。检查此实现:github.com/ModelDepot/tfjs-yolo-tiny 感谢您的评论!如何在 tensorflow.js 中导入 python 训练模型 [pythonprogramming.net/loading-keras-model-tensorflowjs-tutorial/… 使用这个。附有文字说明的视频教程。 这些文件我想将 kerasmodel 转换为 tfjs Face_model_architecture.json,Face_model_weights.h5。我在下面发布了我的代码是否正确? 最后我找到了通过浏览器(如 Web 应用程序)检测流视频中的面部和情绪的解决方案。我参考这个链接:brendansudol.com/writing/tfjs-emotions, github.com/tupleblog/face-classification-js 【参考方案1】:

我将我的 keras 训练模型转换为我有 model.json 文件的 tfjs。 如何将转换后的模型加载到js文件中 我需要 model.predict_class() 来检测面部情绪。 如何在js中导入webcam.js进行直播以访问网络摄像头

convert_model_krs_tfjs.py
-------------------------
import keras
from keras.models import model_from_json 
from keras.optimizers import SGD
import numpy as np
from time import sleep
import tensorflowjs as tfjs

model = model_from_json(open('Face_model_architecture.json').read())
model.load_weights('Face_model_weights.h5')
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)
model.save("Keras-64x2-10epoch")
tfjs.converters.save_keras_model(model, "face")

My python worked code:
----------------------
detectemotion.py
----------------
from keras.models import model_from_json
from keras.optimizers import SGD
import numpy as np
from time import sleep
model = model_from_json(open('./models/Face_model_architecture.json').read())
#model.load_weights('_model_weights.h5')
model.load_weights('./models/Face_model_weights.h5')
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)
print(model)
def extract_face_features(gray, detected_face, offset_coefficients):
        (x, y, w, h) = detected_face
        #print x , y, w ,h
        horizontal_offset = np.int(np.floor(offset_coefficients[0] * w))
        vertical_offset = np.int(np.floor(offset_coefficients[1] * h))


        extracted_face = gray[y+vertical_offset:y+h, 
                          x+horizontal_offset:x-horizontal_offset+w]
        #print extracted_face.shape
        new_extracted_face = zoom(extracted_face, (48. / extracted_face.shape[0], 
                                               48. / extracted_face.shape[1]))
        new_extracted_face = new_extracted_face.astype(np.float32)
        new_extracted_face /= float(new_extracted_face.max())
        return new_extracted_face
from scipy.ndimage import zoom
def detect_face(frame):
        cascPath = "./models/haarcascade_frontalface_default.xml"
        faceCascade = cv2.CascadeClassifier(cascPath)
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        detected_faces = faceCascade.detectMultiScale(
                gray,
                scaleFactor=1.1,
                minNeighbors=6,
                minSize=(48, 48),
                flags=cv2.CASCADE_SCALE_IMAGE
            )
        return gray, detected_faces

import cv2
cascPath = "haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascPath)

video_capture = cv2.VideoCapture(0)

while True:
    # Capture frame-by-frame
#    sleep(0.8)
    ret, frame = video_capture.read()

    # detect faces
    gray, detected_faces = detect_face(frame)

    face_index = 0

    # predict output
    for face in detected_faces:
        (x, y, w, h) = face
        if w > 100:
            # draw rectangle around face 
            cv2.rectangle(frame, (x, y), (x+w, y+h), (0,255,0), 2)

            # extract features
            extracted_face = extract_face_features(gray, face, (0.075, 0.05)) #(0.075, 0.05)

            # predict smile
            prediction_result = model.predict_classes(extracted_face.reshape(1,48,48,1))

            # draw extracted face in the top right corner
            frame[face_index * 48: (face_index + 1) * 48, -49:-1, :] = cv2.cvtColor(extracted_face * 255, cv2.COLOR_GRAY2RGB)

            # annotate main image with a label
            if prediction_result == 3:
                cv2.putText(frame, "Happy!!",(x,y), cv2.FONT_ITALIC, 2, (255,255,255), 2)
            elif prediction_result == 0:
                cv2.putText(frame, "Angry",(x,y), cv2.FONT_HERSHEY_SIMPLEX, 2, (255,255,255), 2)
        elif prediction_result == 1:
                cv2.putText(frame, "Disgust",(x,y), cv2.FONT_HERSHEY_SIMPLEX, 2, (255,255,255), 2)
        elif prediction_result == 2:
                cv2.putText(frame, "Fear",(x,y), cv2.FONT_HERSHEY_SIMPLEX, 2, (255,255,255), 2)
        elif prediction_result == 4:
                cv2.putText(frame, "Sad",(x,y), cv2.FONT_HERSHEY_SIMPLEX, 2, (255,255,255), 2)
        elif prediction_result == 5:
                cv2.putText(frame, "Surprise",(x,y), cv2.FONT_HERSHEY_SIMPLEX, 2,(255,255,255), 2)
        else :
                cv2.putText(frame, "Neutral",(x,y), cv2.FONT_HERSHEY_SIMPLEX, 2,(255,255,255), 2)


            # increment counter
            face_index += 1


    # Display the resulting frame
    cv2.imshow('Video', frame)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()

【讨论】:

以上是关于如何通过浏览器从网络摄像头获取实时流视频详细信息到 python?的主要内容,如果未能解决你的问题,请参考以下文章

如何使用 Java 从网络摄像头获取视频和音频流?

从浏览器使用网络摄像头发布视频

c++ opencv获取编码的网络摄像头流

如何将多个 WebRTC 媒体流(屏幕捕获 + 网络摄像头)混合/组合成一个流?

当前在网络浏览器中流式传输实时视频的最佳实践?

监控摄像头如何进行互联网实时直播