为啥 TensorFlow 对象检测 2.x 在训练模型时不显示 mAP
Posted
技术标签:
【中文标题】为啥 TensorFlow 对象检测 2.x 在训练模型时不显示 mAP【英文标题】:Why TensorFlow object detection 2.x don't show mAP when training the model为什么 TensorFlow 对象检测 2.x 在训练模型时不显示 mAP 【发布时间】:2021-09-26 00:37:49 【问题描述】:我以前用TF 1.4训练过一些物体检测模型,我记得训练时的评估显示了模型的mAP。我的问题是,现在,在 TF 2.5 上,这些指标没有显示,我需要它来评估我的成功。这是我唯一的输出:
I0715 00:57:35.858141 140071375349632 model_lib_v2.py:701] 'Loss/classification_loss': 0.19326138,
'Loss/localization_loss': 0.07984769,
'Loss/regularization_loss': 0.2631261,
'Loss/total_loss': 0.5362352,
'learning_rate': 0.03066655
我已经对模型进行了 2k 步的训练,但什么也没有……我无法仅根据损失来评估我的模型。如何再次打印 mAP?
这是我的管道配置文件(我使用的是带有 Resnet 50 的 SSD):
model
ssd
num_classes: 3
image_resizer
fixed_shape_resizer
height: 640
width: 640
feature_extractor
type: "ssd_resnet50_v1_fpn_keras"
depth_multiplier: 1.0
min_depth: 16
conv_hyperparams
regularizer
l2_regularizer
weight: 0.00039999998989515007
initializer
truncated_normal_initializer
mean: 0.0
stddev: 0.029999999329447746
activation: RELU_6
batch_norm
decay: 0.996999979019165
scale: true
epsilon: 0.0010000000474974513
override_base_feature_extractor_hyperparams: true
fpn
min_level: 3
max_level: 7
box_coder
faster_rcnn_box_coder
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
matcher
argmax_matcher
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
similarity_calculator
iou_similarity
box_predictor
weight_shared_convolutional_box_predictor
conv_hyperparams
regularizer
l2_regularizer
weight: 0.00039999998989515007
initializer
random_normal_initializer
mean: 0.0
stddev: 0.009999999776482582
activation: RELU_6
batch_norm
decay: 0.996999979019165
scale: true
epsilon: 0.0010000000474974513
depth: 256
num_layers_before_predictor: 4
kernel_size: 3
class_prediction_bias_init: -4.599999904632568
anchor_generator
multiscale_anchor_generator
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
scales_per_octave: 2
post_processing
batch_non_max_suppression
score_threshold: 9.99999993922529e-09
iou_threshold: 0.6000000238418579
max_detections_per_class: 100
max_total_detections: 100
use_static_shapes: false
score_converter: SIGMOID
normalize_loss_by_num_matches: true
loss
localization_loss
weighted_smooth_l1
classification_loss
weighted_sigmoid_focal
gamma: 2.0
alpha: 0.25
classification_weight: 1.0
localization_weight: 1.0
encode_background_as_zeros: true
normalize_loc_loss_by_codesize: true
inplace_batchnorm_update: true
freeze_batchnorm: false
train_config
batch_size: 8
data_augmentation_options
random_horizontal_flip
data_augmentation_options
random_crop_image
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0
sync_replicas: true
optimizer
momentum_optimizer
learning_rate
cosine_decay_learning_rate
learning_rate_base: 0.03999999910593033
total_steps: 25000
warmup_learning_rate: 0.013333000242710114
warmup_steps: 2000
momentum_optimizer_value: 0.8999999761581421
use_moving_average: false
fine_tune_checkpoint: "/content/models/research/pretrained_model/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8/checkpoint/ckpt-0"
num_steps: 2100
startup_delay_steps: 0.0
replicas_to_aggregate: 8
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
fine_tune_checkpoint_type: "detection"
use_bfloat16: true
fine_tune_checkpoint_version: V2
train_input_reader
label_map_path: "/content/label_map.pbtxt"
tf_record_input_reader
input_path: "/content/train.record"
eval_config
metrics_set: "coco_detection_metrics"
use_moving_averages: false
eval_input_reader
label_map_path: "/content/label_map.pbtxt"
shuffle: false
num_epochs: 1
tf_record_input_reader
input_path: "/content/test.record"
【问题讨论】:
【参考方案1】:您需要同时在两个 shell 中运行 model_main_tf2.py
脚本。
在第一个 shell 中,使用参数 --model_dir
和 --pipeline_config_path
运行它以进行训练,如下所示:
python model_main_tf2.py --model_dir my-model --pipeline_config_path my-model/pipeline.config --alsologtostderr
在第二个 shell 中,您需要传递一个名为 --checkpoint_dir
的额外参数,指向存储检查点的文件夹,如下所示:
python model_main_tf2.py --model_dir my-model --pipeline_config_path my-model/pipeline.config --checkpont_dir my-model
这将触发脚本的评估模式,TensorBoard 将开始显示 mAP 和召回指标。
【讨论】:
谢谢,毕竟这是我在关注的解决方案,我需要同时使用两个Colab notebook,不太实用,但是很管用!【参考方案2】:在 TF 2.5 中,您可以使用model.summary to see model configuration . metrics (loss ,accuracy ,learning rate ) can be changed in model.compile
。您可以在 model.fit 操作期间实时查看参数值。附上以下文件供您参考
https://www.tensorflow.org/js/guide/models_and_layers https://www.tensorflow.org/guide/keras/train_and_evaluate ,您还可以在训练模型的同时根据默认指标创建自定义指标来测试模型
【讨论】:
以上是关于为啥 TensorFlow 对象检测 2.x 在训练模型时不显示 mAP的主要内容,如果未能解决你的问题,请参考以下文章
Tensorflow对象检测:为啥使用ssd mobilnet v1时图像中的位置会影响检测精度?
为啥来自 Tensorflow 2 对象检测 API 的微调模型上的 mAP 较低?
基于 Tensorflow 2.x 从零训练 15 点人脸关键点检测模型
基于 Tensorflow 2.x 从零训练 15 点人脸关键点检测模型