从 CSV 多类数据集中计算精度和召回率。

Posted

技术标签:

【中文标题】从 CSV 多类数据集中计算精度和召回率。【英文标题】:Calculate Precision and Recall from CSV multiclass datasets. 【发布时间】:2018-08-13 06:49:17 【问题描述】:

我需要从包含多类分类的 CSV 中计算 precisionrecall

更具体地说,我的 csv 结构如下:

real_class1, classified_class1
real_class2, classified_class3
real_class3, classified_class4
real_class4, classified_class2

总共有六个分类。

在二进制示例中,我可以毫无问题地理解如何计算真阳性、假阳性、真阴性和假阴性。但是对于多类我不知道如何进行。

谁能给我举个例子?可能在python中?

【问题讨论】:

构建混淆矩阵,并按照说明here 任何建议如何创建混淆矩阵? scikit-learn.org/stable/modules/generated/… - 您的 CSV 文件中同时包含 y_predy_true 【参考方案1】:

按照评论中的建议,您必须创建混淆矩阵并按照以下步骤操作:

(我假设您使用 spark 是为了在机器学习处理中获得更好的性能)

from __future__ import division
import pandas as pd
import numpy as np
import pickle
from pyspark import SparkContext, SparkConf
from pyspark.sql import SQLContext, functions as fn
from sklearn.metrics import confusion_matrix

def getFirstColumn(line):
    parts = line.split(',')
    return parts[0]

def getSecondColumn(line):
    parts = line.split(',')
    return parts[1]

# Initialization
conf= SparkConf()
conf.setAppName("ConfusionMatrixPrecisionRecall")

sc = SparkContext(conf= conf) # SparkContext
sqlContext = SQLContext(sc) # SqlContext

data = sc.textFile('YOUR_FILE_PATH') # Load dataset

y_true = data.map(getFirstColumn).collect() # Split from line the class
y_pred = data.map(getSecondColumn).collect() # Split from line the tags

confusion_matrix = confusion_matrix(y_true, y_pred)
print("Confusion matrix:\n%s" % confusion_matrix)

# The True Positives are simply the diagonal elements
TP = np.diag(confusion_matrix)
print("\nTP:\n%s" % TP)

# The False Positives are the sum of the respective column, minus the diagonal element (i.e. the TP element
FP = np.sum(confusion_matrix, axis=0) - TP
print("\nFP:\n%s" % FP)

# The False Negatives are the sum of the respective row, minus the         diagonal (i.e. TP) element:
FN = np.sum(confusion_matrix, axis=1) - TP
print("\nFN:\n%s" % FN)

num_classes = INTEGER #static kwnow a priori, put your number of classes
TN = []

for i in range(num_classes):
    temp = np.delete(confusion_matrix, i, 0)    # delete ith row
    temp = np.delete(temp, i, 1)  # delete ith column
    TN.append(sum(sum(temp)))
print("\nTN:\n%s" % TN)




precision = TP/(TP+FP)
recall = TP/(TP+FN)

print("\nPrecision:\n%s" % precision)

print("\nRecall:\n%s" % recall)

【讨论】:

1) OP 中没有提到 Spark 2) 你导入 pandaspicklepyspark.sql.functions 而不使用它们 3) 你初始化 sqlContext 而不使用它 4) 你显然已经逐字使用了我的链接答案的一部分,没有参考(更不用说赞成)......

以上是关于从 CSV 多类数据集中计算精度和召回率。的主要内容,如果未能解决你的问题,请参考以下文章

如何在 Keras 中计算精度和召回率

如何从 Python 中的混淆矩阵中获取精度、召回率和 f 度量 [重复]

如何计算精度和召回率

在 PyML 中获取多类问题的召回率(灵敏度)和精度(PPV)值

在 PyML 中获取多类问题的召回率(灵敏度)和精度(PPV)值

计算超过 2 个类别的精度和召回率