用于整数特征的 NLTK 分类器?

Posted

技术标签:

【中文标题】用于整数特征的 NLTK 分类器?【英文标题】:NLTK classifier for integer features? 【发布时间】:2018-09-11 00:33:55 【问题描述】:

我的特征向量中有整数类型的特征,NLTK 的 NaiveBayesClassifier 将其视为标称值。

上下文

我正在尝试使用 n-gram 构建语言分类器。例如,二元组“th”在英语中比法语更常见。

对于我训练集中的每个句子,我提取如下特征:bigram(th): 5 其中 5(示例)表示二元组“th”在句子中出现的次数。

当我尝试构建具有此类特征的分类器并检查信息量最大的特征时,我意识到分类器没有意识到这些特征是线性的。例如,它可能会将bigram(ea): 4 视为法语,将bigram(ea): 5 视为英语,并将bigram(ea): 6 视为法语。这是相当随意的,并不代表二元组在英语或法语中更常见的逻辑。这就是为什么我需要这样对待整数。

更多想法

当然,我可以用has(th): True 等功能替换这些功能。但是,我认为这是一个坏主意,因为带有 1 个 'th' 实例的法语句子和带有 5 个 'th' 实例的英语句子都将具有无法区分它们的 has(th): True 特征。

我也找到了this relevant link,但它没有为我提供答案。

特征提取器

我的特征提取器如下所示:

def get_ngrams(word, n):
    ngrams_list = []
    ngrams_list.append(list(ngrams(word, n, pad_left=True, pad_right=True, left_pad_symbol='_', right_pad_symbol='_')))
    ngrams_flat_tuples = [ngram for ngram_list in ngrams_list for ngram in ngram_list]
    format_string = ''
    for i in range(0, n):
        format_string += ('%s')
    ngrams_list_flat = [format_string % ngram_tuple for ngram_tuple in ngrams_flat_tuples]
    return ngrams_list_flat

# Feature extractor
def get_ngram_features(sentence_tokens):
    features = 
    # Unigrams
    for word in sentence_tokens:
        ngrams = get_ngrams(word, 1)
        for ngram in ngrams:
            features[f'char(ngram)'] = features.get(f'char(ngram)', 0) + 1
    # Bigrams
    for word in sentence_tokens:
        ngrams = get_ngrams(word, 2)
        for ngram in ngrams:
            features[f'bigram(ngram)'] = features.get(f'bigram(ngram)', 0) + 1
    # Trigrams
    for word in sentence_tokens:
        ngrams = get_ngrams(word, 3)
        for ngram in ngrams:
            features[f'trigram(ngram)'] = features.get(f'trigram(ngram)', 0) + 1
    # Quadrigrams
    for word in sentence_tokens:
        ngrams = get_ngrams(word, 4)
        for ngram in ngrams:
            features[f'quadrigram(ngram)'] = features.get(f'quadrigram(ngram)', 0) + 1
    return features

特征提取示例

get_ngram_features(['test', 'sentence'])

返回:

'char(c)': 1,
 'char(e)': 4,
 'char(n)': 2,
 'char(s)': 2,
 'char(t)': 3,
 'bigram(_s)': 1,
 'bigram(_t)': 1,
 'bigram(ce)': 1,
 'bigram(e_)': 1,
 'bigram(en)': 2,
 'bigram(es)': 1,
 'bigram(nc)': 1,
 'bigram(nt)': 1,
 'bigram(se)': 1,
 'bigram(st)': 1,
 'bigram(t_)': 1,
 'bigram(te)': 2,
 'quadrigram(_sen)': 1,
 'quadrigram(_tes)': 1,
 'quadrigram(ence)': 1,
 'quadrigram(ente)': 1,
 'quadrigram(est_)': 1,
 'quadrigram(nce_)': 1,
 'quadrigram(nten)': 1,
 'quadrigram(sent)': 1,
 'quadrigram(tenc)': 1,
 'quadrigram(test)': 1,
 'trigram(_se)': 1,
 'trigram(_te)': 1,
 'trigram(ce_)': 1,
 'trigram(enc)': 1,
 'trigram(ent)': 1,
 'trigram(est)': 1,
 'trigram(nce)': 1,
 'trigram(nte)': 1,
 'trigram(sen)': 1,
 'trigram(st_)': 1,
 'trigram(ten)': 1,
 'trigram(tes)': 1

【问题讨论】:

您是否尝试通过将事件与阈值进行比较来将其转化为名义特征? (即 th=5) @KonstantinosKokos 这并不理想,因为很难确定所有 n-gram 的最佳阈值 @KonstantinosKokos 你的名字听起来是希腊语。实际上,我正在研究的确切问题涉及希腊语。你可以看这里:github.com/hb20007/greek-dialect-classifier/blob/master/… 看起来很有趣。我不知道您对朴素贝叶斯有多大的困扰,但我很确定其他简单的学习算法(例如随机森林)会自行选择阈值。 除了/而不是在句子中为bigram(xx): n 的每个可能值 n 进行特征化,只需计算字符密度:2*二元组数 'xx' / 句子中的字符数。是的,随机森林会发现能够最大程度提高杂质指标的特征和阈值。 【参考方案1】:

TL;DR

为此目的使用其他库更容易。使用自定义分析器使用sklearn 执行类似https://www.kaggle.com/alvations/basic-nlp-with-nltk 的操作会更容易,例如CountVectorizer(analyzer=preprocess_text)

例如:

from io import StringIO
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from nltk import everygrams

def sent_process(sent):
    return [''.join(ng) for ng in everygrams(sent.replace(' ', '_ _'), 1, 4) 
            if ' ' not in ng and '\n' not in ng and ng != ('_',)]

sent1 = "The quick brown fox jumps over the lazy brown dog."
sent2 = "Mr brown jumps over the lazy fox."
sent3 = 'Mr brown quickly jumps over the lazy dog.'
sent4 = 'The brown quickly jumps over the lazy fox.'

with StringIO('\n'.join([sent1, sent2])) as fin:
    # Override the analyzer totally with our preprocess text
    count_vect = CountVectorizer(analyzer=sent_process)
    count_vect.fit_transform(fin)
count_vect.vocabulary_ 


train_set = count_vect.fit_transform([sent1, sent2])

# To train the classifier
clf = MultinomialNB() 
clf.fit(train_set, ['pos', 'neg']) 

test_set = count_vect.transform([sent3, sent4])
clf.predict(test_set)

剖面图

首先,实际上没有必要将char(...)unigram(...)bigram(...)trigram(...)quadrigram(...) 部分显式标记为功能。

功能集只是字典键,您可以使用实际的 ngram 元组作为键,例如

from collections import Counter
from nltk import ngrams, word_tokenize

features = Counter(ngrams(word_tokenize('This is a something foo foo bar foo foo sentence'), 2))

[出]:

>>> features
Counter(('This', 'is'): 1,
         ('a', 'something'): 1,
         ('bar', 'foo'): 1,
         ('foo', 'bar'): 1,
         ('foo', 'foo'): 2,
         ('foo', 'sentence'): 1,
         ('is', 'a'): 1,
         ('something', 'foo'): 1)

对于多个订单的ngram,可以使用everygrams(),例如

from nltk import everygrams

sent = word_tokenize('This is a something foo foo bar foo foo sentence')
Counter(everygrams(sent, 1, 4))

[出]:

Counter(('This',): 1,
         ('This', 'is'): 1,
         ('This', 'is', 'a'): 1,
         ('This', 'is', 'a', 'something'): 1,
         ('a',): 1,
         ('a', 'something'): 1,
         ('a', 'something', 'foo'): 1,
         ('a', 'something', 'foo', 'foo'): 1,
         ('bar',): 1,
         ('bar', 'foo'): 1,
         ('bar', 'foo', 'foo'): 1,
         ('bar', 'foo', 'foo', 'sentence'): 1,
         ('foo',): 4,
         ('foo', 'bar'): 1,
         ('foo', 'bar', 'foo'): 1,
         ('foo', 'bar', 'foo', 'foo'): 1,
         ('foo', 'foo'): 2,
         ('foo', 'foo', 'bar'): 1,
         ('foo', 'foo', 'bar', 'foo'): 1,
         ('foo', 'foo', 'sentence'): 1,
         ('foo', 'sentence'): 1,
         ('is',): 1,
         ('is', 'a'): 1,
         ('is', 'a', 'something'): 1,
         ('is', 'a', 'something', 'foo'): 1,
         ('sentence',): 1,
         ('something',): 1,
         ('something', 'foo'): 1,
         ('something', 'foo', 'foo'): 1,
         ('something', 'foo', 'foo', 'bar'): 1)

一种提取所需特征的简洁方法:

def sent_vectorizer(sent):
    return [''.join(ng) for ng in everygrams(sent.replace(' ', '_ _'), 1, 4) 
            if ' ' not in ng and ng != ('_',)]
Counter(sent_vectorizer('This is a something foo foo bar foo foo sentence'))

[出]:

Counter('o': 9, 's': 4, 'e': 4, 'f': 4, '_f': 4, 'fo': 4, 'oo': 4, 'o_': 4, '_fo': 4, 'foo': 4, 'oo_': 4, '_foo': 4, 'foo_': 4, 'i': 3, 'n': 3, 'h': 2, 'a': 2, 't': 2, 'hi': 2, 'is': 2, 's_': 2, '_s': 2, 'en': 2, 'is_': 2, 'T': 1, 'm': 1, 'g': 1, 'b': 1, 'r': 1, 'c': 1, 'Th': 1, '_i': 1, '_a': 1, 'a_': 1, 'so': 1, 'om': 1, 'me': 1, 'et': 1, 'th': 1, 'in': 1, 'ng': 1, 'g_': 1, '_b': 1, 'ba': 1, 'ar': 1, 'r_': 1, 'se': 1, 'nt': 1, 'te': 1, 'nc': 1, 'ce': 1, 'Thi': 1, 'his': 1, '_is': 1, '_a_': 1, '_so': 1, 'som': 1, 'ome': 1, 'met': 1, 'eth': 1, 'thi': 1, 'hin': 1, 'ing': 1, 'ng_': 1, '_ba': 1, 'bar': 1, 'ar_': 1, '_se': 1, 'sen': 1, 'ent': 1, 'nte': 1, 'ten': 1, 'enc': 1, 'nce': 1, 'This': 1, 'his_': 1, '_is_': 1, '_som': 1, 'some': 1, 'omet': 1, 'meth': 1, 'ethi': 1, 'thin': 1, 'hing': 1, 'ing_': 1, '_bar': 1, 'bar_': 1, '_sen': 1, 'sent': 1, 'ente': 1, 'nten': 1, 'tenc': 1, 'ence': 1)

长期

不幸的是,没有简单的方法可以更改 NLTK 中 NaiveBayesClassifier 的硬编码方式的工作方式。

如果我们查看 https://github.com/nltk/nltk/blob/develop/nltk/classify/naivebayes.py#L185 ,幕后 NLTK 已经在计算特征中出现的次数。

但请注意,它计算的是文档频率,而不是词频,即在这种情况下,无论一个元素在文档中出现多少次,它都计为一次。如果不更改 NLTK 代码来添加每个功能的值,就没有一种干净的方法,因为它被硬编码为 +=1, https://github.com/nltk/nltk/blob/develop/nltk/classify/naivebayes.py#L201

【讨论】:

确实,sklearn 的MultinomialNB 分类器适用于整数特征。我对数据进行了矢量化,构建了分类器,然后使用 ***.com/a/11140887/4304516 检查了信息量最大的特征

以上是关于用于整数特征的 NLTK 分类器?的主要内容,如果未能解决你的问题,请参考以下文章

scikits learn 和 nltk:朴素贝叶斯分类器性能差异很大

Python:加载的 NLTK 分类器不起作用

NLTK 的朴素贝叶斯分类器是不是适合商业应用?

Python NLTK:如何在分类器预测中检索百分比置信度

如何训练以 pos-tag 序列为特征的朴素贝叶斯分类器?

NLTK SVM 分类器终止