在 Tensorflow 中使用 Adadelta 优化器时出现未初始化值错误
Posted
技术标签:
【中文标题】在 Tensorflow 中使用 Adadelta 优化器时出现未初始化值错误【英文标题】:Uninitialized value error while using Adadelta optimizer in Tensorflow 【发布时间】:2016-08-19 15:36:11 【问题描述】:我正在尝试使用 Adagrad 优化器构建 CNN,但出现以下错误。
tensorflow.python.framework.errors.FailedPreconditionError: Attempting to use uninitialized value Variable_7/Adadelta
[[节点:Adadelta/update_Variable_7/ApplyAdadelta = ApplyAdadelta[T=DT_FLOAT, _class=["loc:@Variable_7"], use_locking=false, _device="/job:localhost/replica:0/task :0/cpu:0"](Variable_7, Variable_7/Adadelta, Variable_7/Adadelta_1, Adadelta/lr, Adadelta/rho, Adadelta/epsilon, gradients/add_3_grad/tuple/control_dependency_1)]] 由操作 u'Adadelta/update_Variable_7/ApplyAdadelta' 引起,
优化器 = tf.train.AdadeltaOptimizer(learning_rate).minimize(cross_entropy)
我尝试在本文中提到的 adagrad 语句之后重新初始化会话变量,但这也没有帮助。
如何避免此错误?谢谢。
Tensorflow: Using Adam optimizer
import tensorflow as tf
import numpy
from tensorflow.examples.tutorials.mnist import input_data
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# Parameters
learning_rate = 0.01
training_epochs = 100
batch_size = 1000
display_step = 1
# Set model weights
W = tf.Variable(tf.zeros([784, 10]), name="weights")
b = tf.Variable(tf.zeros([10]), name="bias")
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
# Initializing the variables
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epochs):
total_batch = int(mnist.train.num_examples/batch_size)
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
x_image = tf.reshape(batch_xs, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
y_conv=tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(batch_ys * tf.log(y_conv), reduction_indices=[1]))
#optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)
optimizer = tf.train.AdadeltaOptimizer(learning_rate).minimize(cross_entropy)
sess.run(init)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(batch_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run([cross_entropy, y_conv,optimizer])
print cross_entropy.eval()
【问题讨论】:
首先,我真的认为模型应该脱离循环。将h_*、cross_entropy、优化器、准确率等放在“b_fc2 = bias_variable([10])”行之后。 【参考方案1】:这里的问题是tf.initialize_all_variables()
是一个误导性名称。它实际上意味着“返回一个初始化所有已经创建的变量的操作(在默认图中)”。当您调用 tf.train.AdadeltaOptimizer(...).minimize()
时,TensorFlow 会创建 其他 变量,这些变量未包含在您之前创建的 init
操作中。
移动线:
init = tf.initialize_all_variables()
...在tf.train.AdadeltaOptimizer
的构造之后应该使您的程序工作。
注意您的程序会在每个训练步骤中重建除变量之外的整个网络。这可能是非常低效的,并且 Adadelta 算法不会像预期的那样适应,因为它的状态在每一步都重新创建。我强烈建议将代码从batch_xs
的定义移动到在两个嵌套for
循环之外创建optimizer
。您应该为batch_xs
和batch_ys
输入定义tf.placeholder()
操作,并使用sess.run()
的feed_dict
参数来传递mnist.train.next_batch()
返回的值。
【讨论】:
以上是关于在 Tensorflow 中使用 Adadelta 优化器时出现未初始化值错误的主要内容,如果未能解决你的问题,请参考以下文章