sklearn RandomizedSearchCV 与流水线 KerasClassifier
Posted
技术标签:
【中文标题】sklearn RandomizedSearchCV 与流水线 KerasClassifier【英文标题】:sklearn RandomizedSearchCV with Pipelined KerasClassifier 【发布时间】:2018-03-25 16:48:57 【问题描述】:我正在使用 sklearn 在 Keras 模型上执行超参数调整优化任务。我正在尝试优化管道中的 KerasClassifiers ...... 代码如下:
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score, StratifiedKFold,RandomizedSearchCV
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.pipeline import Pipeline
my_seed=7
dataframe = pd.read_csv("z:/sonar.all-data.txt", header=None)
dataset = dataframe.values
# split into input and output variables
X = dataset[:,:60].astype(float)
Y = dataset[:,60]
encoder = LabelEncoder()
Y_encoded=encoder.fit_transform(Y)
myScaler = StandardScaler()
X_scaled = myScaler.fit_transform(X)
def create_keras_model(hidden=60):
model = Sequential()
model.add(Dense(units=hidden, input_dim=60, kernel_initializer="normal", activation="relu"))
model.add(Dense(1, kernel_initializer="normal", activation="sigmoid"))
#compile model
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
return model
def create_pipeline(hidden=60):
steps = []
steps.append(('scaler', StandardScaler()))
steps.append(('dl', KerasClassifier(build_fn=create_keras_model,hidden=hidden, verbose=0)))
pipeline = Pipeline(steps)
return pipeline
my_neurons = [15, 30, 60]
my_epochs= [50, 100, 150]
my_batch_size = [5,10]
my_param_grid = dict(hidden=my_neurons, epochs=my_epochs, batch_size=my_batch_size)
model2Tune = KerasClassifier(build_fn=create_keras_model, verbose=0)
model2Tune2 = create_pipeline()
griglia = RandomizedSearchCV(estimator=model2Tune, param_distributions = my_param_grid, n_iter=8 )
griglia.fit(X_scaled, Y_encoded) #this works
griglia2 = RandomizedSearchCV(estimator=create_pipeline, param_distributions = my_param_grid, n_iter=8 )
griglia2.fit(X, Y_encoded) #this does not
我们看到RandomizedSearchCV
适用于 griglia,而它不适用于 griglia2,返回
"TypeError: estimator 应该是一个实现 'fit' 的 estimator 方法,通过”。
是否可以修改代码使其在 Pipeline 对象下运行?
提前致谢
【问题讨论】:
estimator
参数需要一个对象,而不是指针。试试改成griglia2 = RandomizedSearchCV(estimator=create_pipeline(), param_distributions = my_param_grid, n_iter=8 )
@VivekKumar,感谢您的初步见解。我仍然收到一条(新)错误消息,现在是“ValueError: Invalid parameter batch_size for estimator Pipeline。使用 estimator.get_params().keys()
检查可用参数列表。”
【参考方案1】:
estimator 参数需要一个对象,而不是指针。当前,您正在传递一个指向生成管道对象的方法的指针。尝试添加()
来解决这个问题:
griglia2 = RandomizedSearchCV(estimator=create_pipeline(), param_distributions = my_param_grid, n_iter=8 )
现在是关于无效参数错误的第二条评论。您需要将创建管道时定义的名称附加到实际参数中,以便它们可以成功传递。
看Pipeline usage here的描述。
使用这个:
my_param_grid = dict(dl__hidden=my_neurons, dl__epochs=my_epochs,
dl__batch_size=my_batch_size)
注意dl__
(带有两个下划线)。当您想要调整管道内多个对象的参数时,这很有用。
例如,假设除了上述参数,您还想调整或指定 StandardScaler 的参数。
那么你的参数网格就变成了:
my_param_grid = dict(dl__hidden=my_neurons, dl__epochs=my_epochs,
dl__batch_size=my_batch_size,
scaler__with_mean=False)
希望这能解决问题。
【讨论】:
以上是关于sklearn RandomizedSearchCV 与流水线 KerasClassifier的主要内容,如果未能解决你的问题,请参考以下文章