以列表格式获取 KMeans 之后的聚类点
Posted
技术标签:
【中文标题】以列表格式获取 KMeans 之后的聚类点【英文标题】:Get cluster points after KMeans in a list format 【发布时间】:2018-10-22 03:43:52 【问题描述】:假设我使用sklearn's K-means
对一个数据集进行聚类。
我可以使用KMeans.cluster_centers_
轻松查看质心,但我需要在获得质心时获取集群。
我该怎么做?
【问题讨论】:
【参考方案1】:您需要执行以下操作(请参阅我的代码中的 cmets):
import numpy as np
from sklearn.cluster import KMeans
from sklearn import datasets
np.random.seed(0)
# Use Iris data
iris = datasets.load_iris()
X = iris.data
y = iris.target
# KMeans with 3 clusters
clf = KMeans(n_clusters=3)
clf.fit(X,y)
#Coordinates of cluster centers with shape [n_clusters, n_features]
clf.cluster_centers_
#Labels of each point
clf.labels_
# !! Get the indices of the points for each corresponding cluster
mydict = i: np.where(clf.labels_ == i)[0] for i in range(clf.n_clusters)
# Transform the dictionary into list
dictlist = []
for key, value in mydict.iteritems():
temp = [key,value]
dictlist.append(temp)
结果
0: array([ 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 106, 113, 114,
119, 121, 123, 126, 127, 133, 138, 142, 146, 149]),
1: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]),
2: array([ 52, 77, 100, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112,
115, 116, 117, 118, 120, 122, 124, 125, 128, 129, 130, 131, 132,
134, 135, 136, 137, 139, 140, 141, 143, 144, 145, 147, 148])
[[0, array([ 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 106, 113, 114,
119, 121, 123, 126, 127, 133, 138, 142, 146, 149])],
[1, array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49])],
[2, array([ 52, 77, 100, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112,
115, 116, 117, 118, 120, 122, 124, 125, 128, 129, 130, 131, 132,
134, 135, 136, 137, 139, 140, 141, 143, 144, 145, 147, 148])]]
【讨论】:
感谢您的回复,但我需要查看每个集群及其数据点作为列表。我该怎么做? AttributeError: 'dict' 对象没有属性 'iteritems'【参考方案2】:您可能会寻找属性labels_
。
【讨论】:
你能写一个示例代码吗?这对我很有帮助。【参考方案3】:这是一个很长的问题,所以我认为您已经有了答案,但让我发布,因为有人可以从中受益。我们可以只使用它的质心来获得聚类点。 Scikit-learn 有一个名为 cluster_centers_
的属性,它返回 n_clusters 和 n_features。非常简单的代码,你可以在下面看到它来描述集群中心,请浏览代码中的所有 cmets。
import numpy as np
from sklearn.cluster import KMeans
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
# Iris data
iris = datasets.load_iris()
X = iris.data
# Standardization
std_data = StandardScaler().fit_transform(X)
# KMeans clustering with 3 clusters
clf = KMeans(n_clusters = 3)
clf.fit(std_data)
# Coordinates of cluster centers with shape [n_clusters, n_features]
# As we have 3 cluster with 4 features
print("Shape of cluster:", clf.cluster_centers_.shape)
# Scatter plot to see each cluster points visually
plt.scatter(std_data[:,0], std_data[:,1], c = clf.labels_, cmap = "rainbow")
plt.title("K-means Clustering of iris data flower")
plt.show()
# Putting ndarray cluster center into pandas DataFrame
coef_df = pd.DataFrame(clf.cluster_centers_, columns = ["Sepal length", "Sepal width", "Petal length", "Petal width"])
print("\nDataFrame containg each cluster points with feature names:\n", coef_df)
# converting ndarray to a nested list
ndarray2list = clf.cluster_centers_.tolist()
print("\nList of clusterd points:\n")
print(ndarray2list)
输出: This is the output of the above code.
【讨论】:
以上是关于以列表格式获取 KMeans 之后的聚类点的主要内容,如果未能解决你的问题,请参考以下文章