DBSCAN 聚类算法无法正常工作。我究竟做错了啥?
Posted
技术标签:
【中文标题】DBSCAN 聚类算法无法正常工作。我究竟做错了啥?【英文标题】:DBSCAN clustering algorithm not working properly. What am I doing wrong?DBSCAN 聚类算法无法正常工作。我究竟做错了什么? 【发布时间】:2013-03-26 00:07:49 【问题描述】:我正在尝试编写 DBSCAN 算法来聚类一组点,但我得到的结果非常糟糕。这可能是因为数据,但不仅如此。我得到了不应该发生的大小
我做错了什么?代码我看了很多遍,也搞不明白是什么问题。
我参考了DBSCAN Wikipedia page上给出的算法。
private static int[] dbScan(String[] points, int epsilon, int minPts)
int cluster = 0;
// visited stores if point has been visited
boolean[] visited = new boolean[points.length];
// pointsCluster stores which cluster a point has been assigned to
int[] pointsCluster = new int[points.length];
for(int iii = 0; iii < points.length; iii++)
// if point iii is already visited, do nothing
if(visited[iii]) continue;
visited[iii] = true; // mark point iii as visited
// get points in neighborhood of point iii
HashSet<Integer> neighbors = epsilonNeighbors(points, iii, epsilon);
if(neighbors.size() < minPts)
// if number of neighbors < minPts, mark point iii as noise
pointsCluster[iii] = -1;
else
++cluster; // else, start new cluster
expandCluster(points, iii, neighbors, pointsCluster, visited, cluster, epsilon, minPts);
return pointsCluster;
/*
* Expands a cluster if a point is not a noise point
* and has > minPts in its epsilon neighborhood
*/
private static void expandCluster(String[] points, int seedPoint, HashSet<Integer> neighbors,
int[] pointsCluster, boolean[] visited, int cluster, int epsilon, int minPts)
pointsCluster[seedPoint] = cluster; //assign cluster to seed point
// create queue to process neighbors
Queue<Integer> seeds = new LinkedList<Integer>();
seeds.addAll(neighbors);
while(!seeds.isEmpty())
int currentPoint = (Integer) seeds.poll();
if(!visited[currentPoint])
visited[currentPoint] = true; // mark neighbor as visited
// get neighbors of this currentPoint
HashSet<Integer> currentNeighbors = epsilonNeighbors(points, currentPoint, epsilon);
// if currentPoint has >= minPts in neighborhood, add those points to the queue
if(currentNeighbors.size() >= minPts)
seeds.addAll(currentNeighbors);
// if currentPoint has not been assigned a cluster, assign it to the current cluster
if(pointsCluster[currentPoint] == 0) pointsCluster[currentPoint] = cluster;
/*
* Returns a HashSet containing the indexes of points which are
* in the epsilon neighborhood of the point at index == currentPoint
*/
private static HashSet<Integer> epsilonNeighbors(String[] points, int currentPoint, int epsilon)
HashSet<Integer> neighbors = new HashSet<Integer>();
String protein = points[currentPoint];
for(int iii = 0; iii < points.length; iii++)
int score = similarity(points[iii], points[jjj]);
if(score >= epsilon) neighbors.add(iii);
return neighbors;
【问题讨论】:
还可以考虑查看原始出版物,而不是***! 【参考方案1】:当您的结果不好时,可能是因为您的数据不好(对于基于密度的聚类),或者是因为您的参数不好。
事实上,如果它们相互接触,DBSCAN 可以产生小于 minPts 的簇。然后他们可以互相“窃取”边界点。
如何使用例如ELKI验证你的算法输出?
【讨论】:
哇,你说得对。我没有考虑集群“窃取”边界点。非常感谢。所以,从外观上看,算法看起来不错,对吧? 我没有仔细检查。而你的epsilonNeighbors
引用了未定义的变量jjj
。另请注意,Java 集合对原始类型的性能非常差。你真的可能想试试 ELKI,因为它真的非常快。
是的,jjj
应该是 currentPoint
。将调查 ELKI。感谢您的帮助。以上是关于DBSCAN 聚类算法无法正常工作。我究竟做错了啥?的主要内容,如果未能解决你的问题,请参考以下文章
dataTables - 无法获得水平滚动和固定列来完成他们的工作。似乎到处渲染不同。我究竟做错了啥?