ValueError:形状(100,784)和(4,6836)未对齐:784(dim 1)!= 4(dim 0)
Posted
技术标签:
【中文标题】ValueError:形状(100,784)和(4,6836)未对齐:784(dim 1)!= 4(dim 0)【英文标题】:ValueError: shapes (100,784) and (4,6836) not aligned: 784 (dim 1) != 4 (dim 0) 【发布时间】:2019-04-25 14:27:06 【问题描述】:更新:我修正了错误,所以我只需要第二个问题的答案!
我是 Python 的新手,在执行任务时遇到了错误。我查找了这个错误,但没有找到我的答案。
所以,这就是我想要做的。
我想构建一个能够预测值的神经网络。 我用于该类的代码如下
# neural network class definition
类神经网络:
#Step 1: initialise the neural network: number of input layers, hidden layers and output layers
def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
#set number of nodes in each input, hidden, output layer
self.inodes = inputnodes
self.hnodes = hiddennodes
self.onodes = outputnodes
#link weight matrices, wih and who (weights in hidden en output layers), we are going to create matrices for the multiplication of it to get an output
#weights inside the arrays (matrices) are w_i_j, where link is from node i to node j in the next layer
#w11 w21
#w12 w22 etc
self.wih = numpy.random.normal(0.0,pow(self.inodes,-0.5),( self.hnodes, self.inodes))
self.who = numpy.random.normal(0.0,pow(self.hnodes,-0.5),( self.onodes, self.hnodes))
# setting the learning rate
self.lr = learningrate
# activation function is the sigmoid function
self.activation_function = lambda x: scipy.special.expit(x)
pass
#Step 2: training the neural network - adjust the weights based on the error of the network
def train(self, inputs_list, targets_list):
#convert input lists to 2d array (matrice)
inputs = numpy.array(inputs_list, ndmin=2).T
targets = numpy.array(targets_list, ndmin=2).T
#calculate signals into hidden layer
hidden_inputs = numpy.dot(self.wih, inputs)
#calculate signals emerging from hidden layer
hidden_outputs = self.activation_function(hidden_inputs)
#calculate signals into final output layer
final_inputs = numpy.dot(self.who, hidden_outputs)
#calculate signals emerging from final output layer
final_outputs = self.activation_function(final_inputs)
# output layer error is the (target-actual)
output_errors = targets -final_outputs
#hidden layer error is the output_errors, split by weights, recombined at hidden nodes
hidden_errors = numpy.dot(self.who.T, output_errors)
#update the weights for the links between the hidden and output layers
self.who += self.lr * numpy.dot((output_errors*final_outputs * (1.0-final_outputs)),numpy.transpose(hidden_outputs))
# update the weights for the links between the input and hidden layers
self.wih += self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),numpy.transpose(inputs))
pass
#Seap 3: giving an output- thus making the neural network perform a guess
def query(self, inputs_list):
#convert input lists to 2d array (matrice)
inputs = numpy.array(inputs_list, ndmin=2).T
#calculate signals into hidden layer
hidden_inputs = numpy.dot(self.wih, inputs)
#calculate signals emerging from hidden layer
hidden_outputs = self.activation_function(hidden_inputs)
#calculate signals into final output layer
final_inputs = numpy.dot(self.who, hidden_outputs)
#calculate signals emerging from final output layer
final_outputs = self.activation_function(final_inputs)
return final_outputs
我显然先导入了必要的东西:
import numpy
#scipy.special for the sigmoid function expit()
import scipy.special
然后我创建了一个神经网络实例:
#number of input, hidden and output nodes
input_nodes = 784
hidden_nodes = 100
output_nodes = 10
#learning rate is 0.8
learning_rate = 0.8
#create instance of neural network
n = neuralNetwork(input_nodes, hidden_nodes, output_nodes, learning_rate)
在此之后,我读取了带有输入和目标的 excel 文件
import pandas as pd
df = pd.read_excel("Desktop\\PythonTest.xlsx")
文件如下所示:
snapshot of file
h、P、D、o 列是输入,EOQ 列是神经网络应该学习的数字。
所以,我首先这样做了:
xcol=["h","P","D","o"]
ycol=["EOQ"]
x=df[xcol].values
y=df[ycol].values
定义 x 和 y 列。 x 是输入,y 是目标。
我现在想根据这些数据训练神经网络,我使用了这些代码行;
# train the neural network
# go through all records in the training data set
for record in df:
inputs = x
targets = y
n.train(inputs, targets)
pass
这给了我以下错误:
---------------------------------------------------------------------------
ValueError Traceback (most recent call
last)
<ipython-input-23-48e0e741e8ec> in <module>()
4 inputs = x
5 targets = y
----> 6 n.train(inputs, targets)
7 pass
<ipython-input-13-12c121f6896b> in train(self, inputs_list, targets_list)
31
32 #calculate signals into hidden layer
---> 33 hidden_inputs = numpy.dot(self.wih, inputs)
34 #calculate signals emerging from hidden layer
35 hidden_outputs = self.activation_function(hidden_inputs)
ValueError: shapes (100,784) and (4,6836) not aligned: 784 (dim 1) != 4
(dim 0)
那么两个问题:
-
代码出了什么问题?
我想在文件中添加一个额外的列,其中包含训练后的神经网络的猜测。我该如何做到这一点?
在此先感谢您的任何反馈!
干杯
史蒂文
【问题讨论】:
hidden_inputs = numpy.dot(self.wih, inputs)
的参数没有正确的矩阵乘法形状。为了与矩阵a * b
相乘,a
的第二个维度必须与b
的第一个维度匹配。这不会发生,self.wih
的形状为 (100,784)
,而 inputs
的形状为 (4,6836)
,所以你得到了错误 (784 != 4
)。 assert self.wih.shape[1] == inputs.shape[0]
谢谢!但是我必须在我的代码中在哪里插入“assert self.wih.shape[1] == inputs.shape[0]”??
断言只是在调用 np.dot
之前的健全性检查。我不知道导致该错误的问题出在哪里,我只是告诉您错误实际上在说什么!
啊哈!谢谢!我发现了错误。我说有 784 个输入和 10 个输出,但事实并非如此。现在唯一的问题:如何在文件中添加一个带有网络猜测的列?
【参考方案1】:
您已经在使用 pandas,因此您可以简单地获取所有输出,并为 pandas df
创建一个新列。
result = [nn.query(input) for input in df]
df['result'] = result
【讨论】:
以上是关于ValueError:形状(100,784)和(4,6836)未对齐:784(dim 1)!= 4(dim 0)的主要内容,如果未能解决你的问题,请参考以下文章
线性回归器无法预测一组值;错误:ValueError:形状(100,1)和(2,1)未对齐:1(dim 1)!= 2(dim 0)
ValueError:无法为具有形状“(?,4)”的张量“Placeholder_36:0”提供形状(4,)的值
ValueError:logits 和标签必须具有相同的形状 ((None, 4) vs (None, 1))