将 Pandas 列传递给函数时出现“ValueError:Series 的真值不明确”
Posted
技术标签:
【中文标题】将 Pandas 列传递给函数时出现“ValueError:Series 的真值不明确”【英文标题】:"ValueError: The truth value of a Series is ambiguous" when passing pandas columns to a function 【发布时间】:2019-10-29 14:28:32 【问题描述】:我想根据其他 4 列的值创建一个 boolean
类型的新列。我有一个函数is_proximal
,它接受两个 2 元组(4 个值)并返回一个布尔值。
我正在将来自 pandas DataFrame 的列传递给此函数。is_proximal
函数依次调用带有参数的 geopy.distance.distance
。
def is_proximal(p1, p2, exact=True):
dist = distance(p1, p2)
if exact:
return dist.miles < 0.75 # mile threshold
return dist.m < 100 # meter threshold
airbnb_coords = (df.loc[:, "lat_airbnb"], df.loc[:, "long_airbnb"])
homeaway_coords = (df.loc[:, "lat_homeaway"], df.loc[:, "long_homeaway"])
exacts.loc[:, "proximal"] = is_proximal(airbnb_coords, homeaway_coords)
这会导致以下错误:
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
我无法理解为什么会发生此错误。我需要做哪些改变才能完成我想做的事情?
预期的输出是boolean
类型的附加列。输入数据框df
在所有列中都包含整数值。
完整的追溯:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-663-435de26b3cfa> in <module>
----> 1 m = filter_geographic_proximity(beds)
~/src/exemption_project/src/match.py in filter_geographic_proximity(df)
53 airbnb_coords = (exacts.loc[:, "lat_airbnb"], exacts.loc[:, "long_airbnb"])
54 homeaway_coords = (exacts.loc[:, "lat_homeaway"], exacts.loc[:, "long_homeaway"])
---> 55 exacts.loc[:, "proximal"] = is_proximal(airbnb_coords, homeaway_coords)
56
57 airbnb_coords = (inexacts.loc[:, "lat_airbnb"], inexacts.loc[:, "long_airbnb"])
~/src/exemption_project/src/match.py in is_proximal(p1, p2, exact)
29 def filter_geographic_proximity(df):
30 def is_proximal(p1, p2, exact=True):
---> 31 dist = distance(p1, p2)
32
33 if exact:
~/.local/share/virtualenvs/exemption_project-xI6bzvA1/lib/python3.7/site-packages/geopy/distance.py in __init__(self, *args, **kwargs)
387 kwargs.pop('iterations', 0)
388 major, minor, f = self.ELLIPSOID
--> 389 super(geodesic, self).__init__(*args, **kwargs)
390
391 def set_ellipsoid(self, ellipsoid):
~/.local/share/virtualenvs/exemption_project-xI6bzvA1/lib/python3.7/site-packages/geopy/distance.py in __init__(self, *args, **kwargs)
162 elif len(args) > 1:
163 for a, b in util.pairwise(args):
--> 164 kilometers += self.measure(a, b)
165
166 kilometers += units.kilometers(**kwargs)
~/.local/share/virtualenvs/exemption_project-xI6bzvA1/lib/python3.7/site-packages/geopy/distance.py in measure(self, a, b)
408 # Call geographiclib routines for measure and destination
409 def measure(self, a, b):
--> 410 a, b = Point(a), Point(b)
411 lat1, lon1 = a.latitude, a.longitude
412 lat2, lon2 = b.latitude, b.longitude
~/.local/share/virtualenvs/exemption_project-xI6bzvA1/lib/python3.7/site-packages/geopy/point.py in __new__(cls, latitude, longitude, altitude)
163 )
164 else:
--> 165 return cls.from_sequence(seq)
166
167 if single_arg:
~/.local/share/virtualenvs/exemption_project-xI6bzvA1/lib/python3.7/site-packages/geopy/point.py in from_sequence(cls, seq)
403 raise ValueError('When creating a Point from sequence, it '
404 'must not have more than 3 items.')
--> 405 return cls(*args)
406
407 @classmethod
~/.local/share/virtualenvs/exemption_project-xI6bzvA1/lib/python3.7/site-packages/geopy/point.py in __new__(cls, latitude, longitude, altitude)
176
177 latitude, longitude, altitude = \
--> 178 _normalize_coordinates(latitude, longitude, altitude)
179
180 self = super(Point, cls).__new__(cls)
~/.local/share/virtualenvs/exemption_project-xI6bzvA1/lib/python3.7/site-packages/geopy/point.py in _normalize_coordinates(latitude, longitude, altitude)
57
58 def _normalize_coordinates(latitude, longitude, altitude):
---> 59 latitude = float(latitude or 0.0)
60 longitude = float(longitude or 0.0)
61 altitude = float(altitude or 0.0)
~/.local/share/virtualenvs/exemption_project-xI6bzvA1/lib/python3.7/site-packages/pandas/core/generic.py in __nonzero__(self)
1476 raise ValueError("The truth value of a 0 is ambiguous. "
1477 "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
-> 1478 .format(self.__class__.__name__))
1479
1480 __bool__ = __nonzero__
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
【问题讨论】:
这不是一个可运行的代码示例,因此不清楚预期的输出是什么。 @cs95 你能指出SO专门要求可运行代码的地方吗?我也应该向您提供我的数据源吗? 这里是链接:minimal reproducible example。另见How to Ask。您可能也使用了tour,但无论如何都要添加它。 除了实际数据和pd.read_csv
行之外,我还能为您提供什么。你的要求太过分了。这是最低可重复性。
制作虚拟变量以在更小范围内模拟您的数据
【参考方案1】:
从回溯中,很明显错误是在distance
内部调用的distance
函数中引发的。这让我相信,当函数用于处理标量数据时,您正在传递 Series 对象。
请参阅Truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all() 中的讨论,其中在 pandas 系列上使用 python 逻辑运算符会导致相同的错误。
在您的情况下,解决方案是遍历您的数据,并一次将每组坐标传递给您的函数。
df['proximal'] = [
is_proximal((a, b), (c, d))
for a, b, c, d in df[['lat_x', 'long_x', 'lat_y', 'long_y']].values
]
【讨论】:
以上是关于将 Pandas 列传递给函数时出现“ValueError:Series 的真值不明确”的主要内容,如果未能解决你的问题,请参考以下文章
如何使用 spark.sql 将表列传递给 rand 函数?