在python中查找逻辑回归的系数

Posted

技术标签:

【中文标题】在python中查找逻辑回归的系数【英文标题】:Finding coefficients for logistic regression in python 【发布时间】:2020-01-15 09:07:56 【问题描述】:

我正在研究一个分类问题,需要逻辑回归方程的系数。我可以在 R 中找到系数,但我需要在 python 中提交项目。我在 python 中找不到学习逻辑回归系数的代码。 python中如何获取系数值?

【问题讨论】:

clf.coef_, clf.intercept_ 分别是权重和偏差。检查 coef_ 的大小,它是 coef_ndarray of shape (1, n_features) or (n_classes, n_features) 【参考方案1】:

提供更多细节并展示如何替换 pytorch 模型的最后一层:

#%%
"""
Get the weights & biases to set them to a nn.Linear layer in pytorch
"""
import numpy as np
import torch
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from torch import nn


X, y = load_iris(return_X_y=True)
print(f'X.shape=')
print(f'y.shape=')
Din: int = X.shape[1]
total_data_set_size: int = X.shape[0]
assert y.shape[0] == total_data_set_size

clf = LogisticRegression(random_state=0).fit(X, y)
out = clf.predict(X[:2, :])
# print(f'out=')

out = clf.predict_proba(X[:2, :])
print(f'out=')


clf.score(X, y)

# - coef_ndarray of shape (1, n_features) or (n_classes, n_features)
print(f'clf.coef_.shape=')
print(f'clf.intercept_.shape=')
assert (clf.coef_.shape[1] == Din)
Dout: int = clf.coef_.shape[0]
print(f'Dout= which is the number of classes too in classification')
assert (Dout == clf.intercept_.shape[0])

print()
num_classes: int = Dout
mdl = nn.Linear(in_features=Din, out_features=num_classes)
mdl.weight = torch.nn.Parameter(torch.from_numpy(clf.coef_))
mdl.bias = torch.nn.Parameter(torch.from_numpy(clf.intercept_))

out2 = torch.softmax(mdl(torch.from_numpy(X[:2, :])), dim=1)
print(f'out2=')

assert np.isclose(out2.detach().cpu().numpy(), out).all()

# -
# module: nn.Module = getattr(base_model, layer_to_replace)
# num_classes: int = clf.coef_[0]  # out_features=Dout
# num_features: int = clf.coef_[1]  # in_features
# assert module.weight.Size() == torch.Size([num_features, num_classes])
# assert module.bias.Size() == torch.Size([num_classes])
# module.weight = torch.nn.Parameter(torch.from_numpy(clf.coef_))
# module.bias = torch.nn.Parameter(torch.from_numpy(clf.intercept_))

【讨论】:

【参考方案2】:

最后一个答案稍微更正:

pd.DataFrame(zip(X_train.columns, np.transpose(clf.coef_.tolist()[0])), columns=['features', 'coef'])

【讨论】:

【参考方案3】:

假设您的 X 是 Pandas DataFrame 并且 clf 是您的逻辑回归模型,您可以使用这行代码获取功能的名称及其值:

pd.DataFrame(zip(X_train.columns, np.transpose(clf.coef_)), columns=['features', 'coef']) 

【讨论】:

【参考方案4】:

statsmodels 库将为您提供系数结果的细分以及相关的 p 值以确定它们的重要性。

使用 x1 和 y1 变量的示例:

x1_train, x1_test, y1_train, y1_test = train_test_split(x1, y1, random_state=0)

logreg = LogisticRegression().fit(x1_train,y1_train)
logreg

print("Training set score: :.3f".format(logreg.score(x1_train,y1_train)))
print("Test set score: :.3f".format(logreg.score(x1_test,y1_test)))

import statsmodels.api as sm
logit_model=sm.Logit(y1,x1)
result=logit_model.fit()
print(result.summary())

示例结果:

Optimization terminated successfully.
         Current function value: 0.596755
         Iterations 7
                           Logit Regression Results                           
==============================================================================
Dep. Variable:             IsCanceled   No. Observations:                20000
Model:                          Logit   Df Residuals:                    19996
Method:                           MLE   Df Model:                            3
Date:                Sat, 17 Aug 2019   Pseudo R-squ.:                  0.1391
Time:                        23:58:55   Log-Likelihood:                -11935.
converged:                       True   LL-Null:                       -13863.
                                        LLR p-value:                     0.000
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
const         -2.1417      0.050    -43.216      0.000      -2.239      -2.045
x1             0.0055      0.000     32.013      0.000       0.005       0.006
x2             0.0236      0.001     36.465      0.000       0.022       0.025
x3             2.1137      0.104     20.400      0.000       1.911       2.317
==============================================================================

【讨论】:

【参考方案5】:

路飞,请记住始终分享您的代码和尝试,以便我们了解您的尝试并为您提供帮助。无论如何,我认为您正在寻找这个:

import numpy as np
from sklearn.linear_model import LogisticRegression

X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) #Your x values, for a 2 variable model.
#y = 1 * x_0 + 2 * x_1 + 3 #This is the "true" model
y = np.dot(X, np.array([1, 2])) + 3 #Generating the true y-values
reg = LogisticRegression().fit(X, y) #Fitting the model given your X and y values.
reg.coef_ #Prints an array of all regressor values (b1 and b2, or as many bs as your model has)
reg.intercept_  #Prints value for intercept/b0 
reg.predict(np.array([[3, 5]])) #Predicts an array of y-values with the fitted model given the inputs

【讨论】:

【参考方案6】:

sklearn.linear_model.LogisticRegression 适合您。 看这个例子:

from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_iris

X, y = load_iris(return_X_y=True)
clf = LogisticRegression(random_state=0).fit(X, y)

print(clf.coef_, clf.intercept_)

【讨论】:

【参考方案7】:

看看statsmodels library's Logit model。

你会这样使用它:

from statsmodels.discrete.discrete_model import Logit
from statsmodels.tools import add_constant

x = [...] # Obesrvations
y = [...] # Response variable

x = add_constant(x)
print(Logit(y, x).fit().summary())

【讨论】:

以上是关于在python中查找逻辑回归的系数的主要内容,如果未能解决你的问题,请参考以下文章

从逻辑回归系数在python中编写函数

python:如何在sklearn中使用逻辑回归系数构建决策边界

Python 逻辑回归产生错误的系数

sklearn Python 和逻辑回归

机器学习系列7 基于Python的Scikit-learn库构建逻辑回归模型

当特征系数的符号在逻辑回归中发生变化时,如何根据特征系数做出决策/解释结果?