展平熊猫中的嵌套json

Posted

技术标签:

【中文标题】展平熊猫中的嵌套json【英文标题】:Flatten nested json in pandas 【发布时间】:2020-12-28 02:44:08 【问题描述】:

我收到了 JSON 格式的天气观测数据,我想将其展平。

一条全记录

第一个位置,包含 25 个报告,Rep in 'Period'
'SiteRep': 'DV': 'type': 'Obs',
   'Location': ['i': '3002',
     'lat': '60.749',
     'lon': '-0.854',
     'name': 'BALTASOUND',
     'Period': ['Rep': '$': '1380',
        'D': 'SW',
        'G': '34',
        'H': '79.5',
        'P': '1019',
        'S': '25',
        'T': '7.9',
        'V': '13000',
        'W': '8',
        'Dp': '4.6',
        'Pt': 'F',
       'type': 'Day',
       'value': '2019-12-31Z',
      'Rep': ['$': '0',
         'D': 'SW',
         'G': '32',
         'H': '84.0',
         'P': '1018',
         'S': '21',
         'T': '7.5',
         'V': '13000',
         'W': '8',
         'Dp': '5.0',
         'Pt': 'F',
        '$': '60',
         'D': 'SW',
         'G': '34',
         'H': '81.7',
         'P': '1018',
         'S': '22',
         'T': '7.5',
         'V': '12000',
         'W': '8',
         'Dp': '4.6',
         'Pt': 'F',
        '$': '120',
         'D': 'SW',
         'G': '36',
         'H': '79.9',
         'P': '1017',
         'S': '24',
         'T': '7.9',
         'V': '11000',
         'W': '8',
         'Dp': '4.7',
         'Pt': 'F',
        '$': '180',
         'D': 'SW',
         'G': '40',
         'H': '82.3',
         'P': '1016',
         'S': '23',
         'T': '7.5',
         'V': '13000',
         'W': '8',
         'Dp': '4.7',
         'Pt': 'F',
        '$': '240',
         'D': 'SW',
         'G': '33',
         'H': '84.6',
         'P': '1015',
         'S': '18',
         'T': '8.0',
         'V': '12000',
         'W': '8',
         'Dp': '5.6',
         'Pt': 'F',
        '$': '300',
         'D': 'SW',
         'G': '33',
         'H': '85.3',
         'P': '1015',
         'S': '24',
         'T': '8.3',
         'V': '11000',
         'W': '8',
         'Dp': '6.0',
         'Pt': 'F',
        '$': '360',
         'D': 'WSW',
         'G': '41',
         'H': '89.0',
         'P': '1014',
         'S': '30',
         'T': '8.5',
         'V': '8000',
         'W': '8',
         'Dp': '6.8',
         'Pt': 'F',
        '$': '420',
         'D': 'SW',
         'G': '43',
         'H': '89.6',
         'P': '1013',
         'S': '28',
         'T': '8.7',
         'V': '7000',
         'W': '7',
         'Dp': '7.1',
         'Pt': 'F',
        '$': '480',
         'D': 'SW',
         'G': '39',
         'H': '88.4',
         'P': '1013',
         'S': '23',
         'T': '8.7',
         'V': '15000',
         'W': '7',
         'Dp': '6.9',
         'Pt': 'F',
        '$': '540',
         'D': 'SW',
         'G': '40',
         'H': '84.3',
         'P': '1013',
         'S': '29',
         'T': '9.1',
         'V': '19000',
         'W': '8',
         'Dp': '6.6',
         'Pt': 'F',
        '$': '600',
         'D': 'SW',
         'G': '41',
         'H': '85.4',
         'P': '1012',
         'S': '24',
         'T': '8.9',
         'V': '12000',
         'W': '8',
         'Dp': '6.6',
         'Pt': 'F',
        '$': '660',
         'D': 'SW',
         'G': '38',
         'H': '84.2',
         'P': '1012',
         'S': '28',
         'T': '9.2',
         'V': '13000',
         'W': '8',
         'Dp': '6.7',
         'Pt': 'F',
        '$': '720',
         'D': 'SW',
         'G': '47',
         'H': '83.6',
         'P': '1011',
         'S': '32',
         'T': '9.4',
         'V': '12000',
         'W': '8',
         'Dp': '6.8',
         'Pt': 'F',
        '$': '780',
         'D': 'WSW',
         'G': '45',
         'H': '84.8',
         'P': '1011',
         'S': '30',
         'T': '9.4',
         'V': '11000',
         'W': '8',
         'Dp': '7.0',
         'Pt': 'F',
        '$': '840',
         'D': 'SW',
         'G': '43',
         'H': '86.0',
         'P': '1010',
         'S': '28',
         'T': '9.4',
         'V': '11000',
         'W': '7',
         'Dp': '7.2',
         'Pt': 'F',
        '$': '900',
         'D': 'WSW',
         'G': '40',
         'H': '85.4',
         'P': '1009',
         'S': '29',
         'T': '9.4',
         'V': '12000',
         'W': '8',
         'Dp': '7.1',
         'Pt': 'F',
        '$': '960',
         'D': 'SW',
         'G': '39',
         'H': '86.0',
         'P': '1009',
         'S': '25',
         'T': '9.2',
         'V': '11000',
         'W': '8',
         'Dp': '7.0',
         'Pt': 'F',
        '$': '1020',
         'D': 'SW',
         'G': '33',
         'H': '87.8',
         'P': '1009',
         'S': '23',
         'T': '8.9',
         'V': '11000',
         'W': '8',
         'Dp': '7.0',
         'Pt': 'F',
        '$': '1080',
         'D': 'SW',
         'G': '36',
         'H': '85.5',
         'P': '1008',
         'S': '23',
         'T': '8.9',
         'V': '11000',
         'W': '8',
         'Dp': '6.6',
         'Pt': 'F',
        '$': '1140',
         'D': 'SW',
         'G': '40',
         'H': '86.6',
         'P': '1007',
         'S': '28',
         'T': '8.8',
         'V': '14000',
         'W': '8',
         'Dp': '6.7',
         'Pt': 'F',
        '$': '1200',
         'D': 'SSW',
         'G': '39',
         'H': '84.8',
         'P': '1006',
         'S': '28',
         'T': '8.8',
         'V': '13000',
         'W': '8',
         'Dp': '6.4',
         'Pt': 'F',
        '$': '1260',
         'D': 'SSW',
         'G': '37',
         'H': '87.7',
         'P': '1005',
         'S': '26',
         'T': '8.0',
         'V': '15000',
         'W': '8',
         'Dp': '6.1',
         'Pt': 'F',
        '$': '1320',
         'D': 'S',
         'G': '37',
         'H': '88.4',
         'P': '1003',
         'S': '24',
         'T': '8.0',
         'V': '13000',
         'W': '8',
         'Dp': '6.2',
         'Pt': 'F',
        '$': '1380',
         'D': 'S',
         'G': '38',
         'H': '89.6',
         'P': '1002',
         'S': '29',
         'T': '7.6',
         'V': '11000',
         'W': '8',
         'Dp': '6.0',
         'Pt': 'F'],
       'type': 'Day',
       'value': '2020-01-01Z']]

JSON 的结构如下所示,其中每个周期有两个报告:

SiteRep - DV - Location - Period (0) - Rep (0)
                                     - Rep(1)
                          Period (1) - Rep (0)
                                      - Rep(1)

所需的输出是位置、期间和报告值被展平的表格。

| i | lat | lon  |  name |country | continent| elevation| name |Rep(0)$| Rep(0)D|Rep(0)G|..
|---|-----|------|-------|--------|----------|----------|------|-------|--------|-------|..
|   |     |      |       |        |          |          |      |       |        |        |
      

我已经设法让位置变平

normalised_data = pd.json_normalize(df['observations'], record_path=['SiteRep','DV','Location'])

所以现在我的数据看起来像

      i     lat     lon                 name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Period   country continent elevation
0  3002  60.749  -0.854           BALTASOUND                        ['Rep': '$': '1380', 'D': 'SW', 'G': '34', 'H': '79.5', 'P': '1019', 'S': '25', 'T': '7.9', 'V': '13000', 'W': '8', 'Dp': '4.6', 'Pt': 'F', 'type': 'Day', 'value': '2019-12-31Z', 'Rep': ['$': '0', 'D': 'SW', 'G': '32', 'H': '84.0', 'P': '1018', 'S': '21', 'T': '7.5', 'V': '13000', 'W': '8', 'Dp': '5.0', 'Pt': 'F', '$': '60', 'D': 'SW', 'G': '34', 'H': '81.7', 'P': '1018', 'S': '22', 'T': '7.5', 'V': '12000', 'W': '8', 'Dp': '4.6', 'Pt': 'F', '$': '120', 'D': 'SW', 'G': '36', 'H': '79.9', 'P': '1017', 'S': '24', 'T': '7.9', 'V': '11000', 'W': '8', 'Dp': '4.7', 'Pt': 'F', '$': '180', 'D': 'SW', 'G': '40', 'H': '82.3', 'P': '1016', 'S': '23', 'T': '7.5', 'V': '13000', 'W': '8', 'Dp': '4.7', 'Pt': 'F', '$': '240', 'D': 'SW', 'G': '33', 'H': '84.6', 'P': '1015', 'S': '18', 'T': '8.0', 'V': '12000', 'W': '8', 'Dp': '5.6', 'Pt': 'F', '$': '300', 'D': 'SW', 'G': '33', 'H': '85.3', 'P': '1015', 'S': '24', 'T': '8.3', 'V': '11000', 'W': '8', 'Dp': '6.0', 'Pt': 'F', '$': '360', 'D': 'WSW', 'G': '41', 'H': '89.0', 'P': '1014', 'S': '30', 'T': '8.5', 'V': '8000', 'W': '8', 'Dp': '6.8', 'Pt': 'F', '$': '420', 'D': 'SW', 'G': '43', 'H': '89.6', 'P': '1013', 'S': '28', 'T': '8.7', 'V': '7000', 'W': '7', 'Dp': '7.1', 'Pt': 'F', '$': '480', 'D': 'SW', 'G': '39', 'H': '88.4', 'P': '1013', 'S': '23', 'T': '8.7', 'V': '15000', 'W': '7', 'Dp': '6.9', 'Pt': 'F', '$': '540', 'D': 'SW', 'G': '40', 'H': '84.3', 'P': '1013', 'S': '29', 'T': '9.1', 'V': '19000', 'W': '8', 'Dp': '6.6', 'Pt': 'F', '$': '600', 'D': 'SW', 'G': '41', 'H': '85.4', 'P': '1012', 'S': '24', 'T': '8.9', 'V': '12000', 'W': '8', 'Dp': '6.6', 'Pt': 'F', '$': '660', 'D': 'SW', 'G': '38', 'H': '84.2', 'P': '1012', 'S': '28', 'T': '9.2', 'V': '13000', 'W': '8', 'Dp': '6.7', 'Pt': 'F', '$': '720', 'D': 'SW', 'G': '47', 'H': '83.6', 'P': '1011', 'S': '32', 'T': '9.4', 'V': '12000', 'W': '8', 'Dp': '6.8', 'Pt': 'F', '$': '780', 'D': 'WSW', 'G': '45', 'H': '84.8', 'P': '1011', 'S': '30', 'T': '9.4', 'V': '11000', 'W': '8', 'Dp': '7.0', 'Pt': 'F', '$': '840', 'D': 'SW', 'G': '43', 'H': '86.0', 'P': '1010', 'S': '28', 'T': '9.4', 'V': '11000', 'W': '7', 'Dp': '7.2', 'Pt': 'F', '$': '900', 'D': 'WSW', 'G': '40', 'H': '85.4', 'P': '1009', 'S': '29', 'T': '9.4', 'V': '12000', 'W': '8', 'Dp': '7.1', 'Pt': 'F', '$': '960', 'D': 'SW', 'G': '39', 'H': '86.0', 'P': '1009', 'S': '25', 'T': '9.2', 'V': '11000', 'W': '8', 'Dp': '7.0', 'Pt': 'F', '$': '1020', 'D': 'SW', 'G': '33', 'H': '87.8', 'P': '1009', 'S': '23', 'T': '8.9', 'V': '11000', 'W': '8', 'Dp': '7.0', 'Pt': 'F', '$': '1080', 'D': 'SW', 'G': '36', 'H': '85.5', 'P': '1008', 'S': '23', 'T': '8.9', 'V': '11000', 'W': '8', 'Dp': '6.6', 'Pt': 'F', '$': '1140', 'D': 'SW', 'G': '40', 'H': '86.6', 'P': '1007', 'S': '28', 'T': '8.8', 'V': '14000', 'W': '8', 'Dp': '6.7', 'Pt': 'F', '$': '1200', 'D': 'SSW', 'G': '39', 'H': '84.8', 'P': '1006', 'S': '28', 'T': '8.8', 'V': '13000', 'W': '8', 'Dp': '6.4', 'Pt': 'F', '$': '1260', 'D': 'SSW', 'G': '37', 'H': '87.7', 'P': '1005', 'S': '26', 'T': '8.0', 'V': '15000', 'W': '8', 'Dp': '6.1', 'Pt': 'F', '$': '1320', 'D': 'S', 'G': '37', 'H': '88.4', 'P': '1003', 'S': '24', 'T': '8.0', 'V': '13000', 'W': '8', 'Dp': '6.2', 'Pt': 'F', '$': '1380', 'D': 'S', 'G': '38', 'H': '89.6', 'P': '1002', 'S': '29', 'T': '7.6', 'V': '11000', 'W': '8', 'Dp': '6.0', 'Pt': 'F'], 'type': 'Day', 'value': '2020-01-01Z']  SCOTLAND    EUROPE      15.0
1  3005  60.139  -1.183  LERWICK (S. SCREEN)  ['Rep': '$': '1380', 'D': 'W', 'G': '41', 'H': '89.5', 'P': '1020', 'S': '28', 'T': '7.2', 'V': '15000', 'W': '8', 'Dp': '5.6', 'Pt': 'F', 'type': 'Day', 'value': '2019-12-31Z', 'Rep': ['$': '0', 'D': 'WSW', 'G': '44', 'H': '88.1', 'P': '1019', 'S': '33', 'T': '6.9', 'V': '15000', 'W': '7', 'Dp': '5.1', 'Pt': 'F', '$': '60', 'D': 'WSW', 'G': '47', 'H': '90.2', 'P': '1018', 'S': '36', 'T': '6.9', 'V': '15000', 'W': '7', 'Dp': '5.4', 'Pt': 'F', '$': '120', 'D': 'WSW', 'G': '52', 'H': '88.8', 'P': '1018', 'S': '32', 'T': '6.9', 'V': '17000', 'W': '8', 'Dp': '5.2', 'Pt': 'F', '$': '180', 'D': 'WSW', 'G': '47', 'H': '89.4', 'P': '1017', 'S': '34', 'T': '7.4', 'V': '12000', 'W': '8', 'Dp': '5.8', 'Pt': 'F', '$': '240', 'D': 'WSW', 'G': '51', 'H': '89.4', 'P': '1016', 'S': '38', 'T': '7.4', 'V': '14000', 'W': '8', 'Dp': '5.8', 'Pt': 'F', '$': '300', 'D': 'WSW', 'G': '48', 'H': '90.8', 'P': '1015', 'S': '33', 'T': '7.7', 'V': '13000', 'W': '8', 'Dp': '6.3', 'Pt': 'F', '$': '360', 'D': 'WSW', 'G': '49', 'H': '92.0', 'P': '1015', 'S': '34', 'T': '7.9', 'V': '10000', 'W': '8', 'Dp': '6.7', 'Pt': 'F', '$': '420', 'D': 'WSW', 'G': '47', 'H': '92.1', 'P': '1014', 'S': '38', 'T': '8.0', 'V': '8000', 'W': '8', 'Dp': '6.8', 'Pt': 'F', '$': '480', 'D': 'WSW', 'G': '48', 'H': '94.0', 'P': '1014', 'S': '34', 'T': '7.9', 'V': '10000', 'W': '11', 'Dp': '7.0', 'Pt': 'F', '$': '540', 'D': 'WSW', 'G': '55', 'H': '90.2', 'P': '1014', 'S': '40', 'T': '8.1', 'V': '12000', 'W': '7', 'Dp': '6.6', 'Pt': 'F', '$': '600', 'D': 'WSW', 'G': '52', 'H': '88.9', 'P': '1013', 'S': '39', 'T': '8.3', 'V': '15000', 'W': '7', 'Dp': '6.6', 'Pt': 'F', '$': '660', 'D': 'WSW', 'G': '54', 'H': '90.1', 'P': '1013', 'S': '39', 'T': '8.3', 'V': '12000', 'W': '7', 'Dp': '6.8', 'Pt': 'F', '$': '720', 'D': 'WSW', 'G': '53', 'H': '90.9', 'P': '1012', 'S': '38', 'T': '8.5', 'V': '15000', 'W': '7', 'Dp': '7.1', 'Pt': 'F', '$': '780', 'D': 'WSW', 'G': '53', 'H': '91.5', 'P': '1011', 'S': '39', 'T': '8.5', 'V': '12000', 'W': '7', 'Dp': '7.2', 'Pt': 'F', '$': '840', 'D': 'WSW', 'G': '49', 'H': '92.7', 'P': '1011', 'S': '37', 'T': '8.3', 'V': '12000', 'W': '7', 'Dp': '7.2', 'Pt': 'F', '$': '900', 'D': 'WSW', 'G': '51', 'H': '89.6', 'P': '1010', 'S': '34', 'T': '8.3', 'V': '12000', 'W': '7', 'Dp': '6.7', 'Pt': 'F', '$': '960', 'D': 'WSW', 'G': '46', 'H': '88.9', 'P': '1010', 'S': '34', 'T': '8.3', 'V': '15000', 'W': '7', 'Dp': '6.6', 'Pt': 'F', '$': '1020', 'D': 'WSW', 'G': '46', 'H': '86.5', 'P': '1009', 'S': '34', 'T': '8.4', 'V': '18000', 'W': '7', 'Dp': '6.3', 'Pt': 'F', '$': '1080', 'D': 'WSW', 'G': '46', 'H': '84.8', 'P': '1009', 'S': '36', 'T': '8.5', 'V': '18000', 'W': '7', 'Dp': '6.1', 'Pt': 'F', '$': '1140', 'D': 'SSW', 'G': '43', 'H': '88.3', 'P': '1009', 'S': '28', 'T': '7.8', 'V': '18000', 'W': '7', 'Dp': '6.0', 'Pt': 'F', '$': '1200', 'D': 'SSW', 'G': '36', 'H': '88.9', 'P': '1008', 'S': '25', 'T': '7.5', 'V': '20000', 'W': '8', 'Dp': '5.8', 'Pt': 'F', '$': '1260', 'D': 'SSW', 'G': '36', 'H': '88.9', 'P': '1006', 'S': '25', 'T': '7.5', 'V': '15000', 'W': '8', 'Dp': '5.8', 'Pt': 'F', '$': '1320', 'D': 'SSW', 'G': '36', 'H': '89.6', 'P': '1005', 'S': '24', 'T': '7.1', 'V': '13000', 'W': '8', 'Dp': '5.5', 'Pt': 'F', '$': '1380', 'D': 'SSW', 'G': '38', 'H': '86.4', 'P': '1003', 'S': '28', 'T': '7.2', 'V': '18000', 'W': '8', 'Dp': '5.1', 'Pt': 'F'], 'type': 'Day', 'value': '2020-01-01Z']  SCOTLAND    EUROPE      82.0
2  3008  59.527  -1.628            FAIR ISLE                                                                              ['Rep': '$': '1380', 'D': 'SW', 'G': '31', 'H': '83.8', 'P': '1022', 'S': '24', 'T': '6.4', 'V': '17000', 'W': '7', 'Dp': '3.9', 'Pt': 'F', 'type': 'Day', 'value': '2019-12-31Z', 'Rep': ['$': '0', 'D': 'SW', 'G': '30', 'H': '88.1', 'P': '1022', 'S': '16', 'T': '6.0', 'V': '11000', 'W': '0', 'Dp': '4.2', 'Pt': 'F', '$': '60', 'D': 'SW', 'H': '82.1', 'P': '1021', 'S': '18', 'T': '6.5', 'V': '15000', 'W': '0', 'Dp': '3.7', 'Pt': 'F', '$': '120', 'D': 'WSW', 'G': '33', 'H': '74.3', 'P': '1020', 'S': '18', 'T': '6.6', 'V': '24000', 'W': '0', 'Dp': '2.4', 'Pt': 'F', '$': '180', 'D': 'WSW', 'G': '30', 'H': '79.2', 'P': '1019', 'S': '23', 'T': '6.6', 'V': '20000', 'W': '0', 'Dp': '3.3', 'Pt': 'F', '$': '240', 'D': 'SW', 'G': '31', 'H': '82.6', 'P': '1018', 'S': '21', 'T': '6.5', 'V': '17000', 'W': '2', 'Dp': '3.8', 'Pt': 'F', '$': '300', 'D': 'SW', 'H': '81.5', 'P': '1018', 'S': '17', 'T': '6.5', 'V': '18000', 'W': '0', 'Dp': '3.6', 'Pt': 'F', '$': '360', 'D': 'SW', 'H': '80.9', 'P': '1018', 'S': '16', 'T': '6.6', 'V': '15000', 'W': '0', 'Dp': '3.6', 'Pt': 'F', '$': '420', 'D': 'SW', 'H': '78.7', 'P': '1017', 'S': '17', 'T': '7.2', 'V': '14000', 'W': '7', 'Dp': '3.8', 'Pt': 'F', '$': '480', 'D': 'SW', 'H': '84.0', 'P': '1017', 'S': '18', 'T': '7.6', 'V': '18000', 'W': '8', 'Dp': '5.1', 'Pt': 'F', '$': '540', 'D': 'WSW', 'G': '39', 'H': '84.1', 'P': '1016', 'S': '26', 'T': '8.2', 'V': '17000', 'W': '7', 'Dp': '5.7', 'Pt': 'F', '$': '600', 'D': 'SW', 'G': '34', 'H': '78.8', 'P': '1016', 'S': '24', 'T': '8.0', 'V': '16000', 'W': '7', 'Dp': '4.6', 'Pt': 'F', '$': '660', 'D': 'SW', 'G': '29', 'H': '82.3', 'P': '1016', 'S': '21', 'T': '8.1', 'V': '15000', 'W': '7', 'Dp': '5.3', 'Pt': 'F', '$': '720', 'D': 'SSW', 'G': '30', 'H': '84.7', 'P': '1015', 'S': '18', 'T': '8.2', 'V': '10000', 'W': '7', 'Dp': '5.8', 'Pt': 'F', '$': '780', 'D': 'SW', 'G': '30', 'H': '85.3', 'P': '1014', 'S': '23', 'T': '8.1', 'V': '12000', 'W': '7', 'Dp': '5.8', 'Pt': 'F', '$': '840', 'D': 'SW', 'G': '32', 'H': '86.5', 'P': '1013', 'S': '23', 'T': '7.9', 'V': '9000', 'W': '7', 'Dp': '5.8', 'Pt': 'F', '$': '900', 'D': 'SW', 'G': '33', 'H': '87.0', 'P': '1013', 'S': '22', 'T': '8.0', 'V': '12000', 'W': '7', 'Dp': '6.0', 'Pt': 'F', '$': '960', 'D': 'SW', 'G': '31', 'H': '87.7', 'P': '1012', 'S': '22', 'T': '7.9', 'V': '14000', 'W': '7', 'Dp': '6.0', 'Pt': 'F', '$': '1020', 'D': 'SSW', 'G': '31', 'H': '86.5', 'P': '1012', 'S': '22', 'T': '7.9', 'V': '11000', 'W': '7', 'Dp': '5.8', 'Pt': 'F', '$': '1080', 'D': 'SSW', 'G': '32', 'H': '89.0', 'P': '1011', 'S': '21', 'T': '7.7', 'V': '10000', 'W': '7', 'Dp': '6.0', 'Pt': 'F', '$': '1140', 'D': 'SSW', 'G': '33', 'H': '88.9', 'P': '1010', 'S': '25', 'T': '7.8', 'V': '11000', 'W': '7', 'Dp': '6.1', 'Pt': 'F', '$': '1200', 'D': 'S', 'G': '36', 'H': '88.3', 'P': '1009', 'S': '26', 'T': '7.5', 'V': '15000', 'W': '8', 'Dp': '5.7', 'Pt': 'F', '$': '1260', 'D': 'S', 'G': '43', 'H': '83.5', 'P': '1007', 'S': '33', 'T': '7.5', 'V': '15000', 'W': '8', 'Dp': '4.9', 'Pt': 'F', '$': '1320', 'D': 'S', 'G': '43', 'H': '80.0', 'P': '1006', 'S': '31', 'T': '7.6', 'V': '15000', 'W': '7', 'Dp': '4.4', 'Pt': 'F', '$': '1380', 'D': 'S', 'G': '45', 'H': '81.3', 'P': '1005', 'S': '30', 'T': '7.5', 'V': '17000', 'W': '8', 'Dp': '4.5', 'Pt': 'F'], 'type': 'Day', 'value': '2020-01-01Z']  SCOTLAND    EUROPE      57.0
3  3017  58.954    -2.9             KIRKWALL                                                                                                                                                                                                                                                    ['Rep': '$': '1380', 'D': 'SW', 'H': '85.9', 'P': '1022', 'S': '21', 'T': '3.7', 'V': '35000', 'W': '0', 'Dp': '1.6', 'Pt': 'F', 'type': 'Day', 'value': '2019-12-31Z', 'Rep': ['$': '0', 'D': 'SW', 'H': '84.0', 'P': '1022', 'S': '13', 'T': '3.9', 'V': '35000', 'W': '0', 'Dp': '1.5', 'Pt': 'F', '$': '60', 'D': 'SW', 'H': '78.6', 'P': '1021', 'S': '11', 'T': '3.6', 'V': '50000', 'W': '0', 'Dp': '0.3', 'Pt': 'F', '$': '120', 'D': 'SSW', 'H': '79.4', 'P': '1020', 'S': '15', 'T': '3.7', 'V': '55000', 'W': '0', 'Dp': '0.5', 'Pt': 'F', '$': '180', 'D': 'SSW', 'H': '80.1', 'P': '1020', 'S': '9', 'T': '4.0', 'V': '45000', 'W': '0', 'Dp': '0.9', 'Pt': 'F', '$': '240', 'D': 'S', 'H': '83.9', 'P': '1018', 'S': '10', 'T': '2.6', 'V': '35000', 'W': '0', 'Dp': '0.2', 'Pt': 'F', '$': '300', 'D': 'W', 'H': '81.0', 'P': '1018', 'S': '2', 'T': '2.5', 'V': '45000', 'W': '0', 'Dp': '-0.4', 'Pt': 'F', '$': '360', 'D': 'SSW', 'H': '75.3', 'P': '1018', 'S': '10', 'T': '3.8', 'V': '55000', 'W': '0', 'Dp': '-0.1', 'Pt': 'F', '$': '420', 'D': 'SSW', 'H': '80.5', 'P': '1017', 'S': '11', 'T': '3.7', 'V': '50000', 'W': '0', 'Dp': '0.7', 'Pt': 'F', '$': '480', 'D': 'SSW', 'H': '76.7', 'P': '1017', 'S': '16', 'T': '5.2', 'V': '50000', 'W': '0', 'Dp': '1.5', 'Pt': 'F', '$': '540', 'D': 'SSW', 'H': '83.7', 'P': '1017', 'S': '14', 'T': '5.6', 'V': '30000', 'W': '2', 'Dp': '3.1', 'Pt': 'F', '$': '600', 'D': 'SW', 'H': '85.7', 'P': '1016', 'S': '16', 'T': '5.5', 'V': '29000', 'W': '3', 'Dp': '3.3', 'Pt': 'F', '$': '660', 'D': 'SW', 'H': '79.5', 'P': '1016', 'S': '14', 'T': '7.9', 'V': '35000', 'W': '8', 'Dp': '4.6', 'Pt': 'F', '$': '720', 'D': 'SSW', 'H': '80.0', 'P': '1016', 'S': '16', 'T': '7.8', 'V': '30000', 'W': '7', 'Dp': '4.6', 'Pt': 'F', '$': '780', 'D': 'SW', 'H': '83.4', 'P': '1015', 'S': '18', 'T': '7.6', 'V': '30000', 'W': '8', 'Dp': '5.0', 'Pt': 'F', '$': '840', 'D': 'SW', 'H': '82.9', 'P': '1014', 'S': '15', 'T': '7.8', 'V': '40000', 'W': '7', 'Dp': '5.1', 'Pt': 'F', '$': '900', 'D': 'SW', 'G': '29', 'H': '84.0', 'P': '1013', 'S': '22', 'T': '7.6', 'V': '40000', 'W': '7', 'Dp': '5.1', 'Pt': 'F', '$': '960', 'D': 'SSW', 'H': '82.9', 'P': '1012', 'S': '18', 'T': '7.1', 'V': '50000', 'W': '0', 'Dp': '4.4', 'Pt': 'F', '$': '1020', 'D': 'S', 'H': '86.3', 'P': '1012', 'S': '17', 'T': '6.6', 'V': '26000', 'W': '7', 'Dp': '4.5', 'Pt': 'F', '$': '1080', 'D': 'S', 'H': '87.5', 'P': '1011', 'S': '21', 'T': '6.3', 'V': '28000', 'W': '7', 'Dp': '4.4', 'Pt': 'F', '$': '1140', 'D': 'SSW', 'H': '88.1', 'P': '1010', 'S': '19', 'T': '6.4', 'V': '23000', 'W': '2', 'Dp': '4.6', 'Pt': 'F', '$': '1200', 'D': 'S', 'G': '29', 'H': '87.6', 'P': '1009', 'S': '21', 'T': '6.6', 'V': '24000', 'W': '7', 'Dp': '4.7', 'Pt': 'F', '$': '1260', 'D': 'S', 'G': '29', 'H': '83.9', 'P': '1007', 'S': '19', 'T': '6.7', 'V': '29000', 'W': '8', 'Dp': '4.2', 'Pt': 'F', '$': '1320', 'D': 'S', 'G': '29', 'H': '81.7', 'P': '1006', 'S': '22', 'T': '6.8', 'V': '30000', 'W': '8', 'Dp': '3.9', 'Pt': 'F', '$': '1380', 'D': 'S', 'G': '31', 'H': '82.4', 'P': '1004', 'S': '24', 'T': '7.1', 'V': '26000', 'W': '8', 'Dp': '4.3', 'Pt': 'F'], 'type': 'Day', 'value': '2020-01-01Z']  SCOTLAND    EUROPE      26.0
4  3023  57.358  -7.397     SOUTH UIST RANGE                                                                          ['Rep': '$': '1380', 'D': 'S', 'H': '89.4', 'P': '1025', 'S': '22', 'T': '7.3', 'V': '15000', 'W': '8', 'Dp': '5.7', 'Pt': 'F', 'type': 'Day', 'value': '2019-12-31Z', 'Rep': ['$': '0', 'D': 'S', 'H': '93.3', 'P': '1024', 'S': '19', 'T': '7.3', 'V': '15000', 'W': '8', 'Dp': '6.3', 'Pt': 'F', '$': '60', 'D': 'S', 'H': '94.6', 'P': '1023', 'S': '22', 'T': '7.9', 'V': '12000', 'W': '8', 'Dp': '7.1', 'Pt': 'F', '$': '120', 'D': 'S', 'G': '33', 'H': '90.2', 'P': '1022', 'S': '26', 'T': '8.5', 'V': '25000', 'W': '7', 'Dp': '7.0', 'Pt': 'F', '$': '180', 'D': 'S', 'G': '39', 'H': '87.7', 'P': '1021', 'S': '29', 'T': '8.1', 'V': '40000', 'W': '8', 'Dp': '6.2', 'Pt': 'F', '$': '240', 'D': 'SSW', 'G': '39', 'H': '84.7', 'P': '1021', 'S': '29', 'T': '8.5', 'V': '20000', 'W': '8', 'Dp': '6.1', 'Pt': 'F', '$': '300', 'D': 'SSW', 'G': '43', 'H': '85.9', 'P': '1020', 'S': '31', 'T': '8.5', 'V': '23000', 'W': '8', 'Dp': '6.3', 'Pt': 'F', '$': '360', 'D': 'S', 'G': '38', 'H': '90.8', 'P': '1020', 'S': '25', 'T': '8.5', 'V': '15000', 'W': '8', 'Dp': '7.1', 'Pt': 'F', '$': '420', 'D': 'SSW', 'G': '38', 'H': '92.0', 'P': '1019', 'S': '26', 'T': '8.4', 'V': '5000', 'W': '8', 'Dp': '7.2', 'Pt': 'F', '$': '480', 'D': 'S', 'G': '38', 'H': '97.9', 'P': '1019', 'S': '26', 'T': '8.2', 'V': '3700', 'W': '9', 'Dp': '7.9', 'Pt': 'F', '$': '540', 'D': 'SSW', 'G': '41', 'H': '97.9', 'P': '1018', 'S': '30', 'T': '8.4', 'V': '4800', 'W': '8', 'Dp': '8.1', 'Pt': 'F', '$': '600', 'D': 'SSW', 'G': '37', 'H': '95.9', 'P': '1018', 'S': '28', 'T': '8.9', 'V': '11000', 'W': '8', 'Dp': '8.3', 'Pt': 'F', '$': '660', 'D': 'SSW', 'G': '38', 'H': '93.4', 'P': '1018', 'S': '28', 'T': '9.1', 'V': '13000', 'W': '8', 'Dp': '8.1', 'Pt': 'F', '$': '720', 'D': 'SSW', 'G': '37', 'H': '92.1', 'P': '1017', 'S': '28', 'T': '9.0', 'V': '15000', 'W': '8', 'Dp': '7.8', 'Pt': 'F', '$': '780', 'D': 'S', 'G': '38', 'H': '90.9', 'P': '1016', 'S': '28', 'T': '9.1', 'V': '9000', 'W': '8', 'Dp': '7.7', 'Pt': 'F', '$': '840', 'D': 'S', 'G': '41', 'H': '87.8', 'P': '1015', 'S': '30', 'T': '9.1', 'V': '19000', 'W': '8', 'Dp': '7.2', 'Pt': 'F', '$': '900', 'D': 'S', 'G': '44', 'H': '87.2', 'P': '1014', 'S': '31', 'T': '9.1', 'V': '18000', 'W': '8', 'Dp': '7.1', 'Pt': 'F', '$': '960', 'D': 'S', 'G': '46', 'H': '86.6', 'P': '1013', 'S': '31', 'T': '9.1', 'V': '24000', 'W': '8', 'Dp': '7.0', 'Pt': 'F', '$': '1020', 'D': 'S', 'G': '43', 'H': '87.2', 'P': '1012', 'S': '29', 'T': '9.1', 'V': '25000', 'W': '8', 'Dp': '7.1', 'Pt': 'F', '$': '1080', 'D': 'S', 'G': '44', 'H': '91.5', 'P': '1011', 'S': '33', 'T': '8.9', 'V': '14000', 'W': '7', 'Dp': '7.6', 'Pt': 'F', '$': '1140', 'D': 'S', 'G': '47', 'H': '92.8', 'P': '1010', 'S': '33', 'T': '8.7', 'V': '7000', 'W': '8', 'Dp': '7.6', 'Pt': 'F', '$': '1200', 'D': 'S', 'G': '48', 'H': '91.4', 'P': '1009', 'S': '33', 'T': '8.8', 'V': '12000', 'W': '8', 'Dp': '7.5', 'Pt': 'F', '$': '1260', 'D': 'S', 'G': '47', 'H': '91.5', 'P': '1008', 'S': '34', 'T': '8.7', 'V': '18000', 'W': '8', 'Dp': '7.4', 'Pt': 'F', '$': '1320', 'D': 'S', 'G': '46', 'H': '89.0', 'P': '1007', 'S': '33', 'T': '9.0', 'V': '19000', 'W': '8', 'Dp': '7.3', 'Pt': 'F', '$': '1380', 'D': 'S', 'G': '44', 'H': '88.5', 'P': '1006', 'S': '34', 'T': '9.2', 'V': '12000', 'W': '8', 'Dp': '7.4', 'Pt': 'F'], 'type': 'Day', 'value': '2020-01-01Z']  SCOTLAND    EUROPE       4.0

展平 Period 列的最佳方法是什么?有没有更好的方法来达到预期的效果?

谢谢。

P.S 完整的 json 文件位于 https://wetransfer.com/downloads/5dd39d51e640d94a87e04297bfa1db3d20200909162616/c41164

【问题讨论】:

【参考方案1】: 使用json_normalize的组合打开dicts 使用.explode炸开dictslists 列表中的每个dict 都将移至单独的行 在dicts 的新列上使用.json_normalize 关于 JSON 结构 每个'Location' 都有一个'Period' 每个'Period' 都是dicts 的列表。 第一个dict'Rep',也就是dict 第二个dict也是'Rep',但它是dictslist'Period' 被规范化时,第一个'Rep' 扩展为单独的列('Rep.$''Rep.D' 等),但第二个'Rep'NaNlists 的列的dicts'Rep' 中的dictslists 被分解,因此每个dict 都位于单独的行中。 然后将这些dicts标准化为单独的列('$''D'等),将列标题重命名为在前面添加'Rep.',最后用于填充NaNs在数据框 df 的相应列中。
import pandas as pd
import json

# read in the JSON file
with open('metoffice.json', encoding='utf-8') as f:
    data = json.loads(f.read())

# normalize Location
df = pd.json_normalize(data, ['SiteRep', 'DV', 'Location'])

# explode the list of dicts in Period
df = df.explode('Period').reset_index(drop=True)

# normalize and join Period back to df
df = df.join(pd.json_normalize(df.Period)).drop(columns=['Period'])

# Rep contains NaNs or lists of dicts
# NaN can't be exploded so they must be filled with empty lists
# .fillna([]) does not work
df.Rep = df.Rep.fillna(i: [] for i in df.index)

# explode the lists on Rep 
df = df.explode('Rep').reset_index(drop=True)

# fillna with  to use json_normalize
df.Rep = df.Rep.fillna(i:  for i in df.index)

# normalize Rep
rep = pd.json_normalize(df.Rep)

# add Rep. to beginning of column names in the rep dataframe
rep.columns = [f'Rep.v' for v in rep.columns]

# fillna on the the Rep. columns from the rep dataframe and drop the Rep column
df = df.fillna(rep).drop(columns=['Rep'])

df 的输出

如您所见,所有 'Rep' 都有一行 (25: 0-24),第一个 'Location' 与 JSON 文件匹配。
       i     lat     lon                 name   country continent elevation type        value Rep.$ Rep.D Rep.G Rep.H Rep.P Rep.S Rep.T  Rep.V Rep.W Rep.Dp Rep.Pt
0   3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2019-12-31Z  1380    SW    34  79.5  1019    25   7.9  13000     8    4.6      F
1   3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z     0    SW    32  84.0  1018    21   7.5  13000     8    5.0      F
2   3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z    60    SW    34  81.7  1018    22   7.5  12000     8    4.6      F
3   3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z   120    SW    36  79.9  1017    24   7.9  11000     8    4.7      F
4   3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z   180    SW    40  82.3  1016    23   7.5  13000     8    4.7      F
5   3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z   240    SW    33  84.6  1015    18   8.0  12000     8    5.6      F
6   3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z   300    SW    33  85.3  1015    24   8.3  11000     8    6.0      F
7   3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z   360   WSW    41  89.0  1014    30   8.5   8000     8    6.8      F
8   3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z   420    SW    43  89.6  1013    28   8.7   7000     7    7.1      F
9   3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z   480    SW    39  88.4  1013    23   8.7  15000     7    6.9      F
10  3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z   540    SW    40  84.3  1013    29   9.1  19000     8    6.6      F
11  3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z   600    SW    41  85.4  1012    24   8.9  12000     8    6.6      F
12  3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z   660    SW    38  84.2  1012    28   9.2  13000     8    6.7      F
13  3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z   720    SW    47  83.6  1011    32   9.4  12000     8    6.8      F
14  3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z   780   WSW    45  84.8  1011    30   9.4  11000     8    7.0      F
15  3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z   840    SW    43  86.0  1010    28   9.4  11000     7    7.2      F
16  3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z   900   WSW    40  85.4  1009    29   9.4  12000     8    7.1      F
17  3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z   960    SW    39  86.0  1009    25   9.2  11000     8    7.0      F
18  3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z  1020    SW    33  87.8  1009    23   8.9  11000     8    7.0      F
19  3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z  1080    SW    36  85.5  1008    23   8.9  11000     8    6.6      F
20  3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z  1140    SW    40  86.6  1007    28   8.8  14000     8    6.7      F
21  3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z  1200   SSW    39  84.8  1006    28   8.8  13000     8    6.4      F
22  3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z  1260   SSW    37  87.7  1005    26   8.0  15000     8    6.1      F
23  3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z  1320     S    37  88.4  1003    24   8.0  13000     8    6.2      F
24  3002  60.749  -0.854           BALTASOUND  SCOTLAND    EUROPE      15.0  Day  2020-01-01Z  1380     S    38  89.6  1002    29   7.6  11000     8    6.0      F
25  3005  60.139  -1.183  LERWICK (S. SCREEN)  SCOTLAND    EUROPE      82.0  Day  2019-12-31Z  1380     W    41  89.5  1020    28   7.2  15000     8    5.6      F

【讨论】:

感谢您对字典与字典列表的非常详细的解释。

以上是关于展平熊猫中的嵌套json的主要内容,如果未能解决你的问题,请参考以下文章

在熊猫数据框中展平嵌套的 Json

从嵌套的 json 列表中展平 Pandas DataFrame

规范化/展平非常深的嵌套 JSON(其中名称和属性在各个级别中相同)

如何展平熊猫数据框多列中的字典列表

大熊猫 df 成嵌套的 json

熊猫 groupby 到嵌套的 json