根据多列聚合函数的条件结果计算唯一记录
Posted
技术标签:
【中文标题】根据多列聚合函数的条件结果计算唯一记录【英文标题】:Count unique records based on conditional result of aggregate functions on multiple columns 【发布时间】:2021-07-31 11:36:29 【问题描述】:我的数据如下所示:
df = pd.DataFrame('ID': [1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4,
4, 4, 5, 5, 5],
'group': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B',
'B', 'B', 'B', 'B', 'B', 'B'],
'attempts': [0, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 0, 0, 1, 0],
'successes': [1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 1, 1, 0, 1],
'score': [None, 5, 5, 4, 5, 4, 5, None, 1, 5,
0, 1, None, None, 1, None])
## df output
ID group attempts successes score
0 1 A 0 1 None
1 1 A 1 0 5
2 1 A 1 0 5
3 1 A 1 0 4
4 2 A 1 0 5
5 2 A 1 0 4
6 3 A 1 0 5
7 3 A 0 1 None
8 3 A 1 0 1
9 4 B 1 0 5
10 4 B 1 0 0
11 4 B 1 0 1
12 4 B 0 1 None
13 5 B 0 1 None
14 5 B 1 0 1
15 5 B 0 1 None
我正在尝试按两列(group
、score
)进行分组,并计算唯一ID
的数量在首先确定哪些组(group
、@987654326 @) 在所有 score
值中至少有 1 个 successes
计数。换句话说,如果 ID 至少有一个关联成功,我只想在聚合中计算一次(唯一)ID。我也只想计算每个 (group
, ID
) 对的唯一 ID,而不管它包含的 attempt_counts
的数量是多少(即,如果有 5 个成功计数的总和,我只想包括 1 个)。
successes
和 attempts
列是二进制的(只有 1 或 0)。例如,对于 ID = 1、group = A,至少有 1 次成功。因此,在计算每个(group
、score
)的唯一 ID 数量时,我将包括 ID
。
我希望最终输出看起来像这样,这样我就可以计算每个(group
、score
)组合的唯一成功与唯一尝试的比率。
group score successes_count attempts_counts ratio
A 5 2 3 0.67
4 1 2 0.50
1 1 1 1.0
0 0 0 inf
B 5 1 1 1.0
4 0 0 inf
1 2 2 1.0
0 1 1 1.0
到目前为止,我已经能够运行一个数据透视表来计算每个 (group
、ID
) 的总和,以识别那些至少有 1 次成功的 ID。但是,我不确定使用它来达到我想要的最终状态的最佳方法。
p = pd.pivot_table(data=df_new,
values=['ID'],
index=['group', 'ID'],
columns=['successes', 'attempts'],
aggfunc='ID': 'count')
# p output
ID
successes 0 1
attempts 1 0
group ID
A 1 3.0 1.0
2 2.0 NaN
3 2.0 1.0
B 4 3.0 1.0
5 1.0 2.0
【问题讨论】:
【参考方案1】:让我们尝试一下:
import numpy as np
import pandas as pd
df = pd.DataFrame('ID': [1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4,
4, 4, 5, 5, 5],
'group': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B',
'B', 'B', 'B', 'B', 'B', 'B'],
'attempts': [0, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 0, 0, 1, 0],
'successes': [1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 1, 1, 0, 1],
'score': [None, 5, 5, 4, 5, 4, 5, None, 1, 5,
0, 1, None, None, 1, None])
# Groups With At least 1 Success
m = df.groupby('group')['successes'].transform('max').astype(bool)
# Filter Out
df = df[m]
# Replace 0 successes with NaNs
df['successes'] = df['successes'].replace(0, np.nan)
# FFill BFill each group so that any success will fill the group
df['successes'] = df.groupby(['ID', 'group'])['successes'] \
.apply(lambda s: s.ffill().bfill())
# Pivot then stack to make sure each group has all score values
# Sort and reset index
# Rename Columns
# fix types
p = df.drop_duplicates() \
.pivot_table(index='group',
columns='score',
values=['attempts', 'successes'],
aggfunc='sum',
fill_value=0) \
.stack() \
.sort_values(['group', 'score'], ascending=[True, False]) \
.reset_index() \
.rename(columns='attempts': 'attempts_counts',
'successes': 'successes_count') \
.convert_dtypes()
# Calculate Ratio
p['ratio'] = p['successes_count'] / p['attempts_counts']
print(p)
输出:
group score attempts_counts successes_count ratio
0 A 5 3 2 0.666667
1 A 4 2 1 0.5
2 A 1 1 1 1.0
3 A 0 0 0 NaN
4 B 5 1 1 1.0
5 B 4 0 0 NaN
6 B 1 2 2 1.0
7 B 0 1 1 1.0
【讨论】:
以上是关于根据多列聚合函数的条件结果计算唯一记录的主要内容,如果未能解决你的问题,请参考以下文章