一个基于列值的新列中对应列的添加值
Posted
技术标签:
【中文标题】一个基于列值的新列中对应列的添加值【英文标题】:one Column value based add value of corresponding column in new column 【发布时间】:2019-08-06 01:52:27 【问题描述】:我有 2 个两个数据框 df1 和 df2 ,在 df2 我有 4 列。我想如果 df2 column1 值为 0 ,代码应在 df1 中添加相应的 3 列值,列名为 col2_0 、col3_0 和 col4_0 (注意:此过程也需要为值 -1、-2、-3、-4 执行, -5),如果可以解决这个问题,但我正在寻找熊猫简单快捷的方法来处理这个问题
这里是 df2
【问题讨论】:
您的问题缺少详细信息。请阅读此主题:***.com/questions/20109391/… 【参考方案1】:我将使用一个最初为空的 df1 和一些额外的行来做这个例子:
df2 = pd.DataFrame('#timestamp':[-5,-4,-3,-2,-1,0],
'grid_U1': [413.714,413.797,413.926,414.037,414.066,414.064],
'grid_U2': [415.796,415.909,416.117,416.093,416.163,416.183],
'grid_U3': [416.757,416.853,417.09,417.158,417.175,417.085])
df1 = pd.DataFrame(index=range(0,10), columns=['col2_0','col3_0','col4_0'])
如果你想匹配行索引(从 df2 中的给定行号复制到 df1 中的相同行号),那么你可以使用这个:
In [403]: df1[['col2_0','col3_0','col4_0']] = df2[df2['#timestamp'].isin(range(-5,1))][['grid_U1','grid_U2','grid_U3']]
In [404]: df1
Out[404]:
col2_0 col3_0 col4_0
0 413.714 415.796 416.757
1 413.797 415.909 416.853
2 413.926 416.117 417.090
3 414.037 416.093 417.158
4 414.066 416.163 417.175
5 414.064 416.183 417.085
6 NaN NaN NaN
7 NaN NaN NaN
8 NaN NaN NaN
9 NaN NaN NaN
我将通过选择顶部未出现的时间戳值来确认这是匹配的行号:
In [405]: df1[['col2_0','col3_0','col4_0']] = df2[df2['#timestamp'].isin([-3,-1])][['grid_U1','grid_U2','grid_U3']]
In [406]: df1
Out[406]:
col2_0 col3_0 col4_0
0 NaN NaN NaN
1 NaN NaN NaN
2 413.926 416.117 417.090
3 NaN NaN NaN
4 414.066 416.163 417.175
5 NaN NaN NaN
6 NaN NaN NaN
7 NaN NaN NaN
8 NaN NaN NaN
9 NaN NaN NaN
如果您想改为从 df1 的顶部填写,您可以在末尾添加对 reset_index 的调用(您需要 drop=True 以避免在其中添加额外的索引列):
In [412]: df1[['col2_0','col3_0','col4_0']] = df2[df2['#timestamp'].isin([-3,-1])][['grid_U1','grid_U2','grid_U3']].reset_index(drop=True)
In [413]: df1
Out[413]:
col2_0 col3_0 col4_0
0 413.926 416.117 417.090
1 414.066 416.163 417.175
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaN
6 NaN NaN NaN
7 NaN NaN NaN
8 NaN NaN NaN
9 NaN NaN NaN
【讨论】:
以上是关于一个基于列值的新列中对应列的添加值的主要内容,如果未能解决你的问题,请参考以下文章