仅使用带有标签的 HDF5Matrix 的 Keras
Posted
技术标签:
【中文标题】仅使用带有标签的 HDF5Matrix 的 Keras【英文标题】:Using Keras with HDF5Matrix with labels only 【发布时间】:2018-06-08 22:45:35 【问题描述】:我相信这是我在 Stack Overflow 上的第一个问题,所以如果我没有遵循所有准则,我提前道歉。 我最近开始使用 Keras 进行深度学习,由于我使用 h5py 处理 HDF5 文件来管理大型数据集,因此我寻找了一种在非常大的 HDF5 文件上使用 keras 训练模型的方法。我发现最常用的方法是使用keras.utils.io_utils 中的 HDF5Matrix。
我修改了一个 Keras 示例 (mnist.cnn),如下所示:
'''Trains a simple convnet on the MNIST dataset.
Gets to 99.25% test accuracy after 12 epochs
(there is still a lot of margin for parameter tuning).
16 seconds per epoch on a GRID K520 GPU.
'''
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
# My Imports
from os.path import exists
import h5py
from keras.utils.io_utils import HDF5Matrix
batch_size = 128
num_classes = 10
epochs = 12
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
#-----------------------------------HDF5 files creation---------------------------------------
sample_file_name = "x.hdf5"
solution_file_name = "y.hdf5"
train_name = "train"
test_name = "test"
#Create dataset
if (not exists(sample_file_name)) and (not exists(solution_file_name)):
samples_file = h5py.File(sample_file_name,mode='a')
solutions_file = h5py.File(solution_file_name,mode='a')
samples_train = samples_file.create_dataset(train_name,data=x_train)
samples_test = samples_file.create_dataset(test_name, data=x_test)
solution_train = solutions_file.create_dataset(train_name, data=y_train)
solution_test = solutions_file.create_dataset(test_name, data=y_test)
samples_file.flush()
samples_file.close()
solutions_file.flush()
solutions_file.close()
x_train = HDF5Matrix(sample_file_name,train_name)
x_test = HDF5Matrix(sample_file_name,test_name)
y_train = HDF5Matrix(solution_file_name,train_name)
y_test = HDF5Matrix(solution_file_name,test_name)
#---------------------------------------------------------------------------------------------
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
# If using HDF5Matrix one needs to disable shuffle
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test),
shuffle=False)
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
但是,有些事情让我很担心。在分割问题\多类问题中,类的数量非常多,以分类格式保存解决方案是非常浪费的。此外,这样做意味着一旦您添加了一个新类,整个数据集都应该相应地更改。 这就是为什么我认为使用 HDF5Matrix 的归一化功能如下:
'''Trains a simple convnet on the MNIST dataset.
Gets to 99.25% test accuracy after 12 epochs
(there is still a lot of margin for parameter tuning).
16 seconds per epoch on a GRID K520 GPU.
'''
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
# My Imports
from os.path import exists
import h5py
from keras.utils.io_utils import HDF5Matrix
batch_size = 128
num_classes = 10
epochs = 12
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
#-----------------------------------HDF5 files creation---------------------------------------
sample_file_name = "x.hdf5"
solution_file_name = "y.hdf5"
train_name = "train"
test_name = "test"
#Create dataset
if (not exists(sample_file_name)) and (not exists(solution_file_name)):
samples_file = h5py.File(sample_file_name,mode='a')
solutions_file = h5py.File(solution_file_name,mode='a')
samples_train = samples_file.create_dataset(train_name,data=x_train)
samples_test = samples_file.create_dataset(test_name, data=x_test)
solution_train = solutions_file.create_dataset(train_name, data=y_train)
solution_test = solutions_file.create_dataset(test_name, data=y_test)
samples_file.flush()
samples_file.close()
solutions_file.flush()
solutions_file.close()
x_train = HDF5Matrix(sample_file_name,train_name)
x_test = HDF5Matrix(sample_file_name,test_name)
y_train = HDF5Matrix(solution_file_name,train_name,normalizer=lambda solution: keras.utils.to_categorical(solution,num_classes))
y_test = HDF5Matrix(solution_file_name,test_name,normalizer=lambda solution: keras.utils.to_categorical(solution,num_classes))
#---------------------------------------------------------------------------------------------
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
# If using HDF5Matrix one needs to disable shuffle
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test),
shuffle=False)
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
但是,这会产生一个错误,暗示解的形状应该匹配,并且不应该那样使用归一化器:
ValueError: Error when checking target: expected dense_2 to have 2, but got array with shape (60000, 1, 10)
那么,有没有办法将数据保存在 HDF5 中(如果不可能,使用其他格式),并以保存标签(而不是分类向量)的方式使用 Keras,而不会将其转换为回归有问题吗?
【问题讨论】:
【参考方案1】:由于these 行,您收到此错误。
Keras 在训练前检查输入形状。问题是,如果您调用 .shape
,HDF5Matrix 将返回预规范化的形状,然后 Keras 会相信您有一个用于 y_train
的 (60000,) 数组和y_test
的 (10000,)。
但是,当访问矩阵的一个切片时,会应用归一化器,以便例如 y_train[5:7].shape
确实具有最终预期的形状:(2, 10)。
这主要是因为规范化器并不真正期望改变形状,但 Keras 确实可以处理这种情况。
您可以使用fit_generator
而不是fit
来修复它,这样训练只会看到标准化数据:
def generator(features, labels, size):
while True:
start, end = 0, size
while end < len(features):
s = slice(start, end)
# you can actually do the normalization here if you want
yield features[s], labels[s]
start, end = end, end + size
model.fit_generator(
generator(x_train, y_train, batch_size),
steps_per_epoch=len(x_train) // batch_size,
epochs=1,
verbose=1,
validation_data=generator(x_test, y_test, batch_size),
validation_steps=len(x_test) // batch_size,
shuffle=False)
请注意,您可以在生成器函数中进行任何类型的规范化,这对 Keras 是透明的。您可以使用不同的批量大小进行训练和验证。
此外,您必须以相同的方式更改评估:
score = model.evaluate_generator(
generator(x_test, y_test, batch_size),
steps=len(x_test) // batch_size)
顺便说一句,我认为您使用规范化器的解决方案是个好主意。
【讨论】:
感谢您这么快回答我的问题。不幸的是,我对这个解决方案有一个小问题。我正在处理一个非常大的数据集,我计划迁移我的大部分代码来解决分段问题。 y 数据集将是图像,因此会占用大量内存。您建议的解决方案不会导致整个 y 数据集加载到内存中(可能会造成溢出)吗? @DolevShapira 确实我担心可能是这种情况。我已经编辑了我的解决方案以使用生成器,这样您就不会遇到这个问题。 非常感谢您的帮助!我认为我可能能够避开 fit_generator 因为它仅通过 HDF5Matrix 引入的复杂性。显然,这毕竟是不可避免的。 祝你好运!如果您同意,请将解决方案标记为正确。以上是关于仅使用带有标签的 HDF5Matrix 的 Keras的主要内容,如果未能解决你的问题,请参考以下文章