在 Pandas 数据框中追加或添加行
Posted
技术标签:
【中文标题】在 Pandas 数据框中追加或添加行【英文标题】:Appending or Adding Rows in Pandas Dataframe 【发布时间】:2017-01-14 22:44:14 【问题描述】:如果 A 列中的值计数小于 10,我想在下面的 DataFrame 中添加行。
例如,在下表列中,A 组 60 出现了 12 次,而组 61 出现了 9 次。我想在第 61 组的最后一条记录之后添加一行,并从相应的值组 60 复制列 B、C、D 中的值。组 62 的类似操作等等。
A B C D
0 60 0.235 4 7.86
1 60 1.235 5 8.86
2 60 2.235 6 9.86
3 60 3.235 7 10.86
4 60 4.235 8 11.86
5 60 5.235 9 12.86
6 60 6.235 10 13.86
7 60 7.235 11 14.86
8 60 8.235 12 15.86
9 60 9.235 13 16.86
10 60 10.235 14 17.86
11 60 11.235 15 18.86
12 61 12.235 16 19.86
13 61 13.235 17 20.86
14 61 14.235 18 21.86
15 61 15.235 19 22.86
16 61 16.235 20 23.86
17 61 17.235 21 24.86
18 61 18.235 22 25.86
19 61 19.235 23 26.86
20 61 20.235 24 27.86
21 62 20.235 24 28.86
22 62 20.235 24 29.86
23 62 20.235 24 30.86
24 62 20.235 24 31.86
25 62 20.235 24 32.86
【问题讨论】:
你能展示你的努力吗,你应该发布原始文本和代码而不是图片 【参考方案1】:你可以使用:
#cumulative count per group
df['G'] = df.groupby('A').cumcount()
df = df.groupby(['A','G'])
.first() #agregate first
.unstack() #reshape DataFrame
.ffill() #same as fillna(method='ffill')
.stack() #get original shape
.reset_index(drop=True, level=1) #remove level G in index
.reset_index()
print (df)
A B C D
0 60 0.235 4.0 7.86
1 60 1.235 5.0 8.86
2 60 2.235 6.0 9.86
3 60 3.235 7.0 10.86
4 60 4.235 8.0 11.86
5 60 5.235 9.0 12.86
6 60 6.235 10.0 13.86
7 60 7.235 11.0 14.86
8 60 8.235 12.0 15.86
9 60 9.235 13.0 16.86
10 60 10.235 14.0 17.86
11 60 11.235 15.0 18.86
12 61 12.235 16.0 19.86
13 61 13.235 17.0 20.86
14 61 14.235 18.0 21.86
15 61 15.235 19.0 22.86
16 61 16.235 20.0 23.86
17 61 17.235 21.0 24.86
18 61 18.235 22.0 25.86
19 61 19.235 23.0 26.86
20 61 20.235 24.0 27.86
21 61 9.235 13.0 16.86
22 61 10.235 14.0 17.86
23 61 11.235 15.0 18.86
24 62 20.235 24.0 28.86
25 62 20.235 24.0 29.86
26 62 20.235 24.0 30.86
27 62 20.235 24.0 31.86
28 62 20.235 24.0 32.86
29 62 17.235 21.0 24.86
30 62 18.235 22.0 25.86
31 62 19.235 23.0 26.86
32 62 20.235 24.0 27.86
33 62 9.235 13.0 16.86
34 62 10.235 14.0 17.86
35 62 11.235 15.0 18.86
pivot_table
的另一个解决方案:
df['G'] = df.groupby('A').cumcount()
df = df.pivot_table(index='A', columns='G')
.ffill()
.stack()
.reset_index(drop=True, level=1)
.reset_index()
print (df)
A B C D
0 60 0.235 4.0 7.86
1 60 1.235 5.0 8.86
2 60 2.235 6.0 9.86
3 60 3.235 7.0 10.86
4 60 4.235 8.0 11.86
5 60 5.235 9.0 12.86
6 60 6.235 10.0 13.86
7 60 7.235 11.0 14.86
8 60 8.235 12.0 15.86
9 60 9.235 13.0 16.86
10 60 10.235 14.0 17.86
11 60 11.235 15.0 18.86
12 61 12.235 16.0 19.86
13 61 13.235 17.0 20.86
14 61 14.235 18.0 21.86
15 61 15.235 19.0 22.86
16 61 16.235 20.0 23.86
17 61 17.235 21.0 24.86
18 61 18.235 22.0 25.86
19 61 19.235 23.0 26.86
20 61 20.235 24.0 27.86
21 61 9.235 13.0 16.86
22 61 10.235 14.0 17.86
23 61 11.235 15.0 18.86
24 62 20.235 24.0 28.86
25 62 20.235 24.0 29.86
26 62 20.235 24.0 30.86
27 62 20.235 24.0 31.86
28 62 20.235 24.0 32.86
29 62 17.235 21.0 24.86
30 62 18.235 22.0 25.86
31 62 19.235 23.0 26.86
32 62 20.235 24.0 27.86
33 62 9.235 13.0 16.86
34 62 10.235 14.0 17.86
35 62 11.235 15.0 18.86
【讨论】:
以上是关于在 Pandas 数据框中追加或添加行的主要内容,如果未能解决你的问题,请参考以下文章