Python - 重复数据删除问题:TypeError:不可散列的类型:'numpy.ndarray'

Posted

技术标签:

【中文标题】Python - 重复数据删除问题:TypeError:不可散列的类型:\'numpy.ndarray\'【英文标题】:Python - Trouble with Dedupe: TypeError: unhashable type: 'numpy.ndarray'Python - 重复数据删除问题:TypeError:不可散列的类型:'numpy.ndarray' 【发布时间】:2015-01-16 20:41:08 【问题描述】:

我无法运行重复数据删除。我正在尝试使用此库从大量地址中删除重复项。这是我的代码:

import collections
import logging
import optparse
from numpy import nan

import dedupe
from unidecode import unidecode

optp = optparse.OptionParser()
optp.add_option('-v', '--verbose', dest='verbose', action='count',
                help='Increase verbosity (specify multiple times for more)'
                )
(opts, args) = optp.parse_args()
log_level = logging.WARNING 
if opts.verbose == 1:
    log_level = logging.INFO
elif opts.verbose >= 2:
    log_level = logging.DEBUG
logging.getLogger().setLevel(log_level)

input_file = 'H:/My Documents/Python Scripts/Dedupe/DupeTester.csv'
output_file = 'csv_example_output.csv'
settings_file = 'csv_example_learned_settings'
training_file = 'csv_example_training.json'

def preProcess(column):

    import unidecode
    column = column.decode("utf8")
    column = unidecode.unidecode(column)
    column = re.sub('  +', ' ', column)
    column = re.sub('\n', ' ', column)
    column = column.strip().strip('"').strip("'").lower().strip()
    return column

def readData(filename):
    data_d = 
    with open(filename) as f:
        reader = csv.DictReader(f)
        for row in reader:
            clean_row = [(k, preProcess(v)) for (k, v) in row.items()]
            row_id = int(row[''])
            data_d[row_id] = dict(clean_row)

    return data_d


print 'importing data ...'
data_d = readData(input_file)

if os.path.exists(settings_file):
    print 'reading from', settings_file
    with open(settings_file, 'rb') as f:
        deduper = dedupe.StaticDedupe(f)

else:
    fields = [
        "field" : "fulladdr", "type" : "Address",
        "field" : "zip", "type" : "ShortString",
             ]

deduper = dedupe.Dedupe(fields)

deduper.sample(data_d, 200)

if os.path.exists(training_file):
        print 'reading labeled examples from ', training_file
        with open(training_file, 'rb') as f:
            deduper.readTraining(f)

print 'starting active labeling...'

dedupe.consoleLabel(deduper)

deduper.train()

with open(training_file, 'w') as tf :
        deduper.writeTraining(tf)

with open(settings_file, 'w') as sf :
        deduper.writeSettings(sf)

print 'blocking...'



threshold = deduper.threshold(data_d, recall_weight=2)



print 'clustering...'
clustered_dupes = deduper.match(data_d, threshold)

print '# duplicate sets', len(clustered_dupes)




cluster_membership = 
cluster_id = 0
for (cluster_id, cluster) in enumerate(clustered_dupes):
    id_set, scores = cluster
    cluster_d = [data_d[c] for c in id_set]
    canonical_rep = dedupe.canonicalize(cluster_d)
    for record_id, score in zip(id_set, scores) :
        cluster_membership[record_id] = 
            "cluster id" : cluster_id,
            "canonical representation" : canonical_rep,
            "confidence": score
        

singleton_id = cluster_id + 1

with open(output_file, 'w') as f_output:
    writer = csv.writer(f_output)

    with open(input_file) as f_input :
        reader = csv.reader(f_input)

        heading_row = reader.next()
        heading_row.insert(0, 'confidence_score')
        heading_row.insert(0, 'Cluster ID')
        canonical_keys = canonical_rep.keys()
        for key in canonical_keys:
            heading_row.append('canonical_' + key)

        writer.writerow(heading_row)

        for row in reader:
            row_id = int(row[0])
            if row_id in cluster_membership :
                cluster_id = cluster_membership[row_id]["cluster id"]
                canonical_rep = cluster_membership[row_id]["canonical representation"]
                row.insert(0, cluster_membership[row_id]['confidence'])
                row.insert(0, cluster_id)
                for key in canonical_keys:
                    row.append(canonical_rep[key].encode('utf8'))
            else:
                row.insert(0, None)
                row.insert(0, singleton_id)
                singleton_id += 1
                for key in canonical_keys:
                    row.append(None)
            writer.writerow(row)

具体来说,当我运行它时,我会得到以下信息:

C:\Anaconda\lib\site-packages\dedupe\core.py:18: UserWarning: There may be duplicates in the sample
  warnings.warn("There may be duplicates in the sample")
Traceback (most recent call last):

  File "<ipython-input-1-33e46d604c5f>", line 1, in <module>
    runfile('H:/My Documents/Python Scripts/Dedupe/dupetestscript.py', wdir='H:/My Documents/Python Scripts/Dedupe')

  File "C:\Anaconda\lib\site-packages\spyderlib\widgets\externalshell\sitecustomize.py", line 580, in runfile
    execfile(filename, namespace)

  File "H:/My Documents/Python Scripts/Dedupe/dupetestscript.py", line 67, in <module>
    deduper.sample(data_d, 200)

  File "C:\Anaconda\lib\site-packages\dedupe\api.py", line 924, in sample
    random_sample_size))

TypeError: unhashable type: 'numpy.ndarray'

【问题讨论】:

您确定您的示例代码完整吗?有关您的代码未使用的 numpy 数组的错误消息。它从 numpy 导入的唯一东西是未使用的 NAN。 无法复现,代码未简化为实际问题。 @strpeter 这并不奇怪,因为这是代码中的一个错误,已被标记并解决。看这里:github.com/datamade/dedupe/issues/336 【参考方案1】:

可以更改 numpy 数组(它是“可变的”)。 Python 通过使用键的哈希值而不是键来加速字典访问。

因此,只有数字、字符串或元组等可散列对象才能用作字典中的键。来自 Python 词汇表中 hashable 的定义:

如果一个对象有一个在其生命周期内永远不会改变的哈希值(它需要一个__hash__() 方法),那么它是可哈希的,并且可以是 与其他对象相比(它需要一个__eq__() 方法)。可散列 比较相等的对象必须具有相同的哈希值。

哈希性使对象可用作字典键和集合成员,因为这些数据结构在内部使用哈希值。

所有 Python 的不可变内置对象都是可散列的,而没有可变容器(例如列表或字典)是可散列的。对象 默认情况下,用户定义类的实例是可散列的;他们 所有比较不相等(除了自己),它们的哈希值为 源自他们的id()。

【讨论】:

这很不幸。如果你在 Pandas 中工作并想创建一个 dict 怎么办?熊猫在引擎盖下都是麻木的...... 您可以在 Pandas 数据框或 numpy 数组中从不可变数据创建字典键。您不能将数组或数据框本身用作 key。不过,您可以将其用作值。

以上是关于Python - 重复数据删除问题:TypeError:不可散列的类型:'numpy.ndarray'的主要内容,如果未能解决你的问题,请参考以下文章

Python列表问题:只想获取数据并删除字段的标题[重复]

Python中可变数据的重复数据删除/合并

如何根据python中的多个条件对excel文件进​​行重复数据删除?

删除数据框熊猫python中的重复和最相似

在 Python 中删除阈值 [重复]

python删除列表中得重复得数据