Pandas str.contains - 在字符串中搜索多个值并在新列中打印值[重复]
Posted
技术标签:
【中文标题】Pandas str.contains - 在字符串中搜索多个值并在新列中打印值[重复]【英文标题】:Pandas str.contains - Search for multiple values in a string and print the values in a new column [duplicate] 【发布时间】:2018-07-15 20:27:10 【问题描述】:我刚开始用 Python 编码,想构建一个解决方案,您可以在其中搜索字符串以查看它是否包含给定的一组值。
我在 R 中找到了一个使用 stringr 库的类似解决方案:Search for a value in a string and if the value exists, print it all by itself in a new column
以下代码似乎可以工作,但我也想输出我正在寻找的三个值,这个解决方案只会输出一个值:
#Inserting new column
df.insert(5, "New_Column", np.nan)
#Searching old column
df['New_Column'] = np.where(df['Column_with_text'].str.contains('value1|value2|value3', case=False, na=False), 'value', 'NaN')
----- 编辑 ------
所以我意识到我没有给出很好的解释,对此感到抱歉。
下面是我匹配字符串中的水果名称的示例,根据它是否在字符串中找到任何匹配项,它将在新列中打印出 true 或 false。这是我的问题:我不想打印出真假,而是想打印出它在字符串中找到的名称,例如。苹果、橙子等。
import pandas as pd
import numpy as np
text = [('I want to buy some apples.', 0),
('Oranges are good for the health.', 0),
('John is eating some grapes.', 0),
('This line does not contain any fruit names.', 0),
('I bought 2 blueberries yesterday.', 0)]
labels = ['Text','Random Column']
df = pd.DataFrame.from_records(text, columns=labels)
df.insert(2, "MatchedValues", np.nan)
foods =['apples', 'oranges', 'grapes', 'blueberries']
pattern = '|'.join(foods)
df['MatchedValues'] = df['Text'].str.contains(pattern, case=False)
print(df)
结果
Text Random Column MatchedValues
0 I want to buy some apples. 0 True
1 Oranges are good for the health. 0 True
2 John is eating some grapes. 0 True
3 This line does not contain any fruit names. 0 False
4 I bought 2 blueberries yesterday. 0 True
想要的结果
Text Random Column MatchedValues
0 I want to buy some apples. 0 apples
1 Oranges are good for the health. 0 oranges
2 John is eating some grapes. 0 grapes
3 This line does not contain any fruit names. 0 NaN
4 I bought 2 blueberries yesterday. 0 blueberries
【问题讨论】:
【参考方案1】:您需要设置正则表达式标志(将您的搜索解释为正则表达式):
whatIwant = df['Column_with_text'].str.contains('value1|value2|value3',
case=False, regex=True)
df['New_Column'] = np.where(whatIwant, df['Column_with_text'])
----- 编辑 ------
根据更新后的问题陈述,以下是更新后的答案:
您需要使用括号在正则表达式中定义一个捕获组,并使用extract()
函数返回在捕获组中找到的值。 lower()
函数处理任何大写字母
df['MatchedValues'] = df['Text'].str.lower().str.extract( '('+pattern+')', expand=False)
【讨论】:
这解决了您的问题吗? 不,但我现在已经编辑了我的帖子,以便更清楚地说明我的目标是什么。非常感谢您的帮助! 只是想知道,您是否尝试过我更新的(单行)解决方案?【参考方案2】:这是一种方法:
foods =['apples', 'oranges', 'grapes', 'blueberries']
def matcher(x):
for i in foods:
if i.lower() in x.lower():
return i
else:
return np.nan
df['Match'] = df['Text'].apply(matcher)
# Text Match
# 0 I want to buy some apples. apples
# 1 Oranges are good for the health. oranges
# 2 John is eating some grapes. grapes
# 3 This line does not contain any fruit names. NaN
# 4 I bought 2 blueberries yesterday. blueberries
【讨论】:
以上是关于Pandas str.contains - 在字符串中搜索多个值并在新列中打印值[重复]的主要内容,如果未能解决你的问题,请参考以下文章
Python pandas,使用 .str.contains 搜索数据框列的子字符串时出错
pandas str.contains 匹配多个字符串并获取匹配的值
Pandas str.contains 用于部分字符串的精确匹配