在未对齐的字节边界上有效地打包 10 位数据

Posted

技术标签:

【中文标题】在未对齐的字节边界上有效地打包 10 位数据【英文标题】:Efficiently packing 10-bit data on unaligned byte boundries 【发布时间】:2016-01-13 19:37:42 【问题描述】:

我正在尝试对不与字节边界对齐的倍数进行一些打包。这就是我正在尝试做的具体事情。

我有一个 512 位数组(8 个 64 位整数)的数据。该数组内部是与 2 个字节对齐的 10 位数据。我需要做的是将 512 位的 10 位数据(5 个 64 位整数)剥离到 320 位。

我可以考虑手动执行此操作的方法,即遍历 512 位数组的每个 2 字节部分,屏蔽掉 10 位,或者将它们一起考虑字节边界并创建输出 64-位整数。像这样:

void pack512to320bits(uint64 (&array512bits)[8], uint64 (&array320bits)[5])

    array320bits[0] = (array512bits[0] & maskFor10bits) | ((array512bits[0] & (maskFor10bits << 16)) << 10) | 
                  ((array512bits[0] & (maskFor10bits << 32)) << 20) | ((array512bits[0] << 48) << 30) | 
                  ((arrayFor512bits[1] & (maskFor10bits)) << 40) | ((arrayFor512bits[1] & (maskFor10bits << 16)) << 50) |
                  ((arrayFor512bits[1] & (0xF << 32)) << 60);
    array320bits[1] = 0;
    array320bits[2] = 0;
    array320bits[3] = 0;
    array320bits[4] = 0;

我知道这会起作用,但它似乎容易出错并且不容易扩展到更大的字节序列。

或者,我可以遍历输入数组,将所有 10 位值剥离到一个向量中,然后在最后将它们连接起来,再次确保我与字节边界对齐。像这样的:

void pack512to320bits(uint64 (&array512bits)[8], uint64 (&array320bits)[5])

    static uint64 maskFor10bits = 0x3FF;
    std::vector<uint16> maskedPixelBytes(8 * 4);

    for (unsigned int qword = 0; qword < 8; ++qword)
    
        for (unsigned int pixelBytes = 0; pixelBytes < 4; ++pixelBytes)
        
        maskedPixelBytes[qword * 4 + pixelBytes] = (array512bits[qword] & (maskFor10bits << (16 * pixelbytes)));
         
    
    array320bits[0] = maskedPixelBytes[0] | (maskedPixelBytes[1] << 10) | (maskedPixelBytes[2] << 20) | (maskedPixelBytes[3] << 30) |
                  (maskedPixelBytes[4] << 40) | (maskedPixelBytes[5] << 50) | (maskedPixelBytes[6] << 60);
    array320bits[1] = (maskedPixelBytes[6] >> 4) | (maskedPixelBytes[7] << 6) ...


    array320bits[2] = 0;
    array320bits[3] = 0;
    array320bits[4] = 0;

这种方式更容易调试/读取,但效率低下,并且不能扩展到更大的字节序列。我想知道是否有更简单/算法的方法来进行这种位打包。

【问题讨论】:

您想提取任意长度,还是它们总是固定在 16 位中嵌入的 10 位?如果是这样,您可以处理四批 10 位打包成 40 位(五个 8 位字节)(然后迭代接下来的 40 位)。 相关:Keep only the 10 useful bits in 16-bit words 用于 AVX2 SIMD。 【参考方案1】:

你想要什么都可以,但这取决于某些条件以及你认为什么是有效的。

首先,如果 2 个数组始终是 1 512 位和 1 320 位数组,也就是说,如果要传递的数组始终是 uint64 (&amp;array512bits)[8]uint64 (&amp;array320bits)[5],那么实际上效率要高几个数量级硬编码填充。

如果您想考虑 更大的字节序列,您可以创建一个算法,将填充考虑在内并相应地移出位,然后迭代较大的 uint64 值位数组。然而,使用这种方法会在程序集中引入增加计算时间的分支(例如if (total_shifted &lt; bit_size) 等)。即使进行了优化,生成的程序集仍然比手动执行移位更复杂,而且,执行此操作的代码需要考虑每个数组的大小,以确保它们能够适当地相互适应,从而增加更多计算时间(或一般代码复杂度)。

例如,考虑这个手动移位代码:

static void pack512to320_manual(uint64 (&a512)[8], uint64 (&a320)[5])

    a320[0] = (
        (a512[0] & 0x00000000000003FF)         | // 10 -> 10
        ((a512[0] & 0x0000000003FF0000) >> 6)  | // 10 -> 20
        ((a512[0] & 0x000003FF00000000) >> 12) | // 10 -> 30
        ((a512[0] & 0x03FF000000000000) >> 18) | // 10 -> 40
        ((a512[1] & 0x00000000000003FF) << 40) | // 10 -> 50
        ((a512[1] & 0x0000000003FF0000) << 34) | // 10 -> 60
        ((a512[1] & 0x0000000F00000000) << 28)); // 4  -> 64

    a320[1] = (
        ((a512[1] & 0x000003F000000000) >> 36) | // 6  -> 6
        ((a512[1] & 0x03FF000000000000) >> 42) | // 10 -> 16
        ((a512[2] & 0x00000000000003FF) << 16) | // 10 -> 26
        ((a512[2] & 0x0000000003FF0000) << 10) | // 10 -> 36
        ((a512[2] & 0x000003FF00000000) << 4)  | // 10 -> 46
        ((a512[2] & 0x03FF000000000000) >> 2)  | // 10 -> 56
        ((a512[3] & 0x00000000000000FF) << 56)); // 8  -> 64

    a320[2] = (
        ((a512[3] & 0x0000000000000300) >> 8)  | // 2  -> 2
        ((a512[3] & 0x0000000003FF0000) >> 14) | // 10 -> 12
        ((a512[3] & 0x000003FF00000000) >> 20) | // 10 -> 22
        ((a512[3] & 0x03FF000000000000) >> 26) | // 10 -> 32
        ((a512[4] & 0x00000000000003FF) << 32) | // 10 -> 42
        ((a512[4] & 0x0000000003FF0000) << 26) | // 10 -> 52
        ((a512[4] & 0x000003FF00000000) << 20) | // 10 -> 62
        ((a512[4] & 0x0003000000000000) << 14)); // 2  -> 64

    a320[3] = (
        ((a512[4] & 0x03FC000000000000) >> 50) | // 8  -> 8
        ((a512[5] & 0x00000000000003FF) << 8)  | // 10 -> 18
        ((a512[5] & 0x0000000003FF0000) << 2)  | // 10 -> 28
        ((a512[5] & 0x000003FF00000000) >> 4)  | // 10 -> 38
        ((a512[5] & 0x03FF000000000000) >> 10) | // 10 -> 48
        ((a512[6] & 0x00000000000003FF) << 48) | // 10 -> 58
        ((a512[6] & 0x00000000003F0000) << 42)); // 6  -> 64

    a320[4] = (
        ((a512[6] & 0x0000000003C00000) >> 22) | // 4  -> 4
        ((a512[6] & 0x000003FF00000000) >> 28) | // 10 -> 14
        ((a512[6] & 0x03FF000000000000) >> 34) | // 10 -> 24
        ((a512[7] & 0x00000000000003FF) << 24) | // 10 -> 34
        ((a512[7] & 0x0000000003FF0000) << 18) | // 10 -> 44
        ((a512[7] & 0x000003FF00000000) << 12) | // 10 -> 54
        ((a512[7] & 0x03FF000000000000) << 6));  // 10 -> 64

此代码将仅接受 uint64 类型的数组,这些数组在考虑到 10 位边界的情况下相互适合,并相应地移动,以便将 512 位数组打包到 320 位数组中,这样做像uint64* a512p = a512; pack512to320_manual(a512p, a320); 这样的东西会在编译时失败,因为a512p 不是uint64 (&amp;)[8](即类型安全)。请注意,此代码已完全展开以显示位移序列,但您可以使用 #defineenum 来避免“幻数”并使代码更清晰。

如果您想扩展它以考虑更大的字节序列,您可以执行以下操作:

template < std::size_t X, std::size_t Y >
static void pack512to320_loop(const uint64 (&array512bits)[X], uint64 (&array320bits)[Y])

    const uint64* start = array512bits;
    const uint64* end = array512bits + (X-1);
    uint64 tmp = *start;
    uint64 tmask = 0;
    int i = 0, tot = 0, stot = 0, rem = 0, z = 0;
    bool excess = false;
    while (start <= end) 
        while (stot < bit_size) 
            array320bits[i] |= ((tmp & 0x00000000000003FF) << tot);
            tot += 10; // increase shift left by 10 bits
            tmp = tmp >> 16; // shift off 2 bytes
            stot += 16; // increase shifted total
            if ((excess = ((tot + 10) >= bit_size)))  break; 
        
        if (stot == bit_size) 
            tmp = *(++start); // get next value
            stot = 0;
        
        if (excess) 
            rem = (bit_size - tot); // remainder bits to shift off
            tot = 0;
            // create the mask
            tmask = 0;
            for (z = 0; z < rem; ++z)  tmask |= (1 << z); 
            // get the last bits
            array320bits[i++] |= ((tmp & tmask) << (bit_size - rem));
            // shift off and adjust
            tmp = tmp >> rem;
            rem = (10 - rem);
            // new mask
            tmask = 0;
            for (z = 0; z < rem; ++z)  tmask |= (1 << z); 
            array320bits[i] = (tmp & tmask);

            tot += rem; // increase shift left by remainder bits
            tmp = tmp >> (rem + 6); // shift off 2 bytes
            stot += 16;
            excess = false;
        
    

此代码还考虑了字节边界并将它们打包到 512 位数组中。但是,此代码 不会进行任何错误检查以确保大小正确匹配,因此如果X % 8 != 0Y % 5 != 0(其中XY > 0),您可以得到无效的结果!此外,由于涉及循环、临时和转换,它比手动版本慢得多,而且,第一次阅读函数代码的人可能需要更多时间来破译循环代码的全部意图和上下文。位移版本。

如果您想要介于两者之间的东西,您可以使用手动打包功能并以 8 和 5 为一组迭代较大的字节数组,以确保字节正确对齐;类似于以下内容:

template < std::size_t X, std::size_t Y >
static void pack512to320_manual_loop(const uint64 (&array512bits)[X], uint64 (&array320bits)[Y])

    if (((X == 0) || (X % 8 != 0)) || ((Y == 0) || (Y % 5 != 0)) || ((X < Y) || (Y % X != Y))) 
        // handle invalid sizes how you need here
        std::cerr << "Invalid sizes!" << std::endl;
        return;
    
    uint64* a320 = array320bits;
    const uint64* end = array512bits + (X-1);
    for (const uint64* a512 = array512bits; a512 < end; a512 += 8) 
        *a320 = (
            (a512[0] & 0x00000000000003FF)         | // 10 -> 10
            ((a512[0] & 0x0000000003FF0000) >> 6)  | // 10 -> 20
            ((a512[0] & 0x000003FF00000000) >> 12) | // 10 -> 30
            ((a512[0] & 0x03FF000000000000) >> 18) | // 10 -> 40
            ((a512[1] & 0x00000000000003FF) << 40) | // 10 -> 50
            ((a512[1] & 0x0000000003FF0000) << 34) | // 10 -> 60
            ((a512[1] & 0x0000000F00000000) << 28)); // 4  -> 64
        ++a320;

        *a320 = (
            ((a512[1] & 0x000003F000000000) >> 36) | // 6  -> 6
            ((a512[1] & 0x03FF000000000000) >> 42) | // 10 -> 16
            ((a512[2] & 0x00000000000003FF) << 16) | // 10 -> 26
            ((a512[2] & 0x0000000003FF0000) << 10) | // 10 -> 36
            ((a512[2] & 0x000003FF00000000) << 4)  | // 10 -> 46
            ((a512[2] & 0x03FF000000000000) >> 2)  | // 10 -> 56
            ((a512[3] & 0x00000000000000FF) << 56)); // 8  -> 64
        ++a320;

        *a320 = (
            ((a512[3] & 0x0000000000000300) >> 8)  | // 2  -> 2
            ((a512[3] & 0x0000000003FF0000) >> 14) | // 10 -> 12
            ((a512[3] & 0x000003FF00000000) >> 20) | // 10 -> 22
            ((a512[3] & 0x03FF000000000000) >> 26) | // 10 -> 32
            ((a512[4] & 0x00000000000003FF) << 32) | // 10 -> 42
            ((a512[4] & 0x0000000003FF0000) << 26) | // 10 -> 52
            ((a512[4] & 0x000003FF00000000) << 20) | // 10 -> 62
            ((a512[4] & 0x0003000000000000) << 14)); // 2  -> 64
        ++a320;

        *a320 = (
            ((a512[4] & 0x03FC000000000000) >> 50) | // 8  -> 8
            ((a512[5] & 0x00000000000003FF) << 8)  | // 10 -> 18
            ((a512[5] & 0x0000000003FF0000) << 2)  | // 10 -> 28
            ((a512[5] & 0x000003FF00000000) >> 4)  | // 10 -> 38
            ((a512[5] & 0x03FF000000000000) >> 10) | // 10 -> 48
            ((a512[6] & 0x00000000000003FF) << 48) | // 10 -> 58
            ((a512[6] & 0x00000000003F0000) << 42)); // 6  -> 64
        ++a320;

        *a320 = (
            ((a512[6] & 0x0000000003C00000) >> 22) | // 4  -> 4
            ((a512[6] & 0x000003FF00000000) >> 28) | // 10 -> 14
            ((a512[6] & 0x03FF000000000000) >> 34) | // 10 -> 24
            ((a512[7] & 0x00000000000003FF) << 24) | // 10 -> 34
            ((a512[7] & 0x0000000003FF0000) << 18) | // 10 -> 44
            ((a512[7] & 0x000003FF00000000) << 12) | // 10 -> 54
            ((a512[7] & 0x03FF000000000000) << 6));  // 10 -> 64
        ++a320;
    

这类似于手动打包功能,只会增加少量的检查时间,但可以处理更大的数组,它们会干净地打包到彼此中(再次,展开以显示序列)。

在 i7@2.2GHz 上使用 -O3g++ 4.2.1 对上述示例进行计时,得出以下平均时间:

pack512to320_loop: 0.135 我们

pack512to320_manual: 0.0017 我们

pack512to320_manual_loop: 0.0020 我们

这里是用于测试输入/输出和一般时序的测试代码:

#include <iostream>
#include <ctime>
#if defined(_MSC_VER)
    #include <cstdint>
    #include <windows.h>
    #define timesruct LARGE_INTEGER
    #define dotick(v) QueryPerformanceCounter(&v)
    timesruct freq;
#else
    #define timesruct struct timespec
    #define dotick(v) clock_gettime(CLOCK_MONOTONIC, &v)
#endif

static const std::size_t bit_size = sizeof(uint64) * 8;

template < std::size_t X, std::size_t Y >
static void pack512to320_loop(const uint64 (&array512bits)[X], uint64 (&array320bits)[Y])

    const uint64* start = array512bits;
    const uint64* end = array512bits + (X-1);
    uint64 tmp = *start;
    uint64 tmask = 0;
    int i = 0, tot = 0, stot = 0, rem = 0, z = 0;
    bool excess = false;
    // this line is only here for validities sake,
    // it was commented out during testing for performance
    for (z = 0; z < Y; ++z)  array320bits[z] = 0; 
    while (start <= end) 
        while (stot < bit_size) 
            array320bits[i] |= ((tmp & 0x00000000000003FF) << tot);
            tot += 10; // increase shift left by 10 bits
            tmp = tmp >> 16; // shift off 2 bytes
            stot += 16; // increase shifted total
            if ((excess = ((tot + 10) >= bit_size)))  break; 
        
        if (stot == bit_size) 
            tmp = *(++start); // get next value
            stot = 0;
        
        if (excess) 
            rem = (bit_size - tot); // remainder bits to shift off
            tot = 0;
            // create the mask
            tmask = 0;
            for (z = 0; z < rem; ++z)  tmask |= (1 << z); 
            // get the last bits
            array320bits[i++] |= ((tmp & tmask) << (bit_size - rem));
            // shift off and adjust
            tmp = tmp >> rem;
            rem = (10 - rem);
            // new mask
            tmask = 0;
            for (z = 0; z < rem; ++z)  tmask |= (1 << z); 
            array320bits[i] = (tmp & tmask);

            tot += rem; // increase shift left by remainder bits
            tmp = tmp >> (rem + 6); // shift off 2 bytes
            stot += 16;
            excess = false;
        
    


template < std::size_t X, std::size_t Y >
static void pack512to320_manual_loop(const uint64 (&array512bits)[X], uint64 (&array320bits)[Y])

    if (((X == 0) || (X % 8 != 0)) || ((Y == 0) || (Y % 5 != 0)) || ((X < Y) || (Y % X != Y))) 
        // handle invalid sizes how you need here
        std::cerr << "Invalid sizes!" << std::endl;
        return;
    
    uint64* a320 = array320bits;
    const uint64* end = array512bits + (X-1);
    for (const uint64* a512 = array512bits; a512 < end; a512 += 8) 
        *a320 = (
            (a512[0] & 0x00000000000003FF)         | // 10 -> 10
            ((a512[0] & 0x0000000003FF0000) >> 6)  | // 10 -> 20
            ((a512[0] & 0x000003FF00000000) >> 12) | // 10 -> 30
            ((a512[0] & 0x03FF000000000000) >> 18) | // 10 -> 40
            ((a512[1] & 0x00000000000003FF) << 40) | // 10 -> 50
            ((a512[1] & 0x0000000003FF0000) << 34) | // 10 -> 60
            ((a512[1] & 0x0000000F00000000) << 28)); // 4  -> 64
        ++a320;

        *a320 = (
            ((a512[1] & 0x000003F000000000) >> 36) | // 6  -> 6
            ((a512[1] & 0x03FF000000000000) >> 42) | // 10 -> 16
            ((a512[2] & 0x00000000000003FF) << 16) | // 10 -> 26
            ((a512[2] & 0x0000000003FF0000) << 10) | // 10 -> 36
            ((a512[2] & 0x000003FF00000000) << 4)  | // 10 -> 46
            ((a512[2] & 0x03FF000000000000) >> 2)  | // 10 -> 56
            ((a512[3] & 0x00000000000000FF) << 56)); // 8  -> 64
        ++a320;

        *a320 = (
            ((a512[3] & 0x0000000000000300) >> 8)  | // 2  -> 2
            ((a512[3] & 0x0000000003FF0000) >> 14) | // 10 -> 12
            ((a512[3] & 0x000003FF00000000) >> 20) | // 10 -> 22
            ((a512[3] & 0x03FF000000000000) >> 26) | // 10 -> 32
            ((a512[4] & 0x00000000000003FF) << 32) | // 10 -> 42
            ((a512[4] & 0x0000000003FF0000) << 26) | // 10 -> 52
            ((a512[4] & 0x000003FF00000000) << 20) | // 10 -> 62
            ((a512[4] & 0x0003000000000000) << 14)); // 2  -> 64
        ++a320;

        *a320 = (
            ((a512[4] & 0x03FC000000000000) >> 50) | // 8  -> 8
            ((a512[5] & 0x00000000000003FF) << 8)  | // 10 -> 18
            ((a512[5] & 0x0000000003FF0000) << 2)  | // 10 -> 28
            ((a512[5] & 0x000003FF00000000) >> 4)  | // 10 -> 38
            ((a512[5] & 0x03FF000000000000) >> 10) | // 10 -> 48
            ((a512[6] & 0x00000000000003FF) << 48) | // 10 -> 58
            ((a512[6] & 0x00000000003F0000) << 42)); // 6  -> 64
        ++a320;

        *a320 = (
            ((a512[6] & 0x0000000003C00000) >> 22) | // 4  -> 4
            ((a512[6] & 0x000003FF00000000) >> 28) | // 10 -> 14
            ((a512[6] & 0x03FF000000000000) >> 34) | // 10 -> 24
            ((a512[7] & 0x00000000000003FF) << 24) | // 10 -> 34
            ((a512[7] & 0x0000000003FF0000) << 18) | // 10 -> 44
            ((a512[7] & 0x000003FF00000000) << 12) | // 10 -> 54
            ((a512[7] & 0x03FF000000000000) << 6));  // 10 -> 64
        ++a320;
    


static void pack512to320_manual(uint64 (&a512)[8], uint64 (&a320)[5])

    a320[0] = (
        (a512[0] & 0x00000000000003FF)         | // 10 -> 10
        ((a512[0] & 0x0000000003FF0000) >> 6)  | // 10 -> 20
        ((a512[0] & 0x000003FF00000000) >> 12) | // 10 -> 30
        ((a512[0] & 0x03FF000000000000) >> 18) | // 10 -> 40
        ((a512[1] & 0x00000000000003FF) << 40) | // 10 -> 50
        ((a512[1] & 0x0000000003FF0000) << 34) | // 10 -> 60
        ((a512[1] & 0x0000000F00000000) << 28)); // 4  -> 64

    a320[1] = (
        ((a512[1] & 0x000003F000000000) >> 36) | // 6  -> 6
        ((a512[1] & 0x03FF000000000000) >> 42) | // 10 -> 16
        ((a512[2] & 0x00000000000003FF) << 16) | // 10 -> 26
        ((a512[2] & 0x0000000003FF0000) << 10) | // 10 -> 36
        ((a512[2] & 0x000003FF00000000) << 4)  | // 10 -> 46
        ((a512[2] & 0x03FF000000000000) >> 2)  | // 10 -> 56
        ((a512[3] & 0x00000000000000FF) << 56)); // 8  -> 64

    a320[2] = (
        ((a512[3] & 0x0000000000000300) >> 8)  | // 2  -> 2
        ((a512[3] & 0x0000000003FF0000) >> 14) | // 10 -> 12
        ((a512[3] & 0x000003FF00000000) >> 20) | // 10 -> 22
        ((a512[3] & 0x03FF000000000000) >> 26) | // 10 -> 32
        ((a512[4] & 0x00000000000003FF) << 32) | // 10 -> 42
        ((a512[4] & 0x0000000003FF0000) << 26) | // 10 -> 52
        ((a512[4] & 0x000003FF00000000) << 20) | // 10 -> 62
        ((a512[4] & 0x0003000000000000) << 14)); // 2  -> 64

    a320[3] = (
        ((a512[4] & 0x03FC000000000000) >> 50) | // 8  -> 8
        ((a512[5] & 0x00000000000003FF) << 8)  | // 10 -> 18
        ((a512[5] & 0x0000000003FF0000) << 2)  | // 10 -> 28
        ((a512[5] & 0x000003FF00000000) >> 4)  | // 10 -> 38
        ((a512[5] & 0x03FF000000000000) >> 10) | // 10 -> 48
        ((a512[6] & 0x00000000000003FF) << 48) | // 10 -> 58
        ((a512[6] & 0x00000000003F0000) << 42)); // 6  -> 64

    a320[4] = (
        ((a512[6] & 0x0000000003C00000) >> 22) | // 4  -> 4
        ((a512[6] & 0x000003FF00000000) >> 28) | // 10 -> 14
        ((a512[6] & 0x03FF000000000000) >> 34) | // 10 -> 24
        ((a512[7] & 0x00000000000003FF) << 24) | // 10 -> 34
        ((a512[7] & 0x0000000003FF0000) << 18) | // 10 -> 44
        ((a512[7] & 0x000003FF00000000) << 12) | // 10 -> 54
        ((a512[7] & 0x03FF000000000000) << 6));  // 10 -> 64


template < std::size_t N >
static void printit(uint64 (&arr)[N])

    for (std::size_t i = 0; i < N; ++i) 
        std::cout << "arr[" << i << "] = " << arr[i] << std::endl;
    


static double elapsed_us(timesruct init, timesruct end)

    #if defined(_MSC_VER)
        if (freq.LowPart == 0)  QueryPerformanceFrequency(&freq); 
        return (static_cast<double>(((end.QuadPart - init.QuadPart) * 1000000)) / static_cast<double>(freq.QuadPart));
    #else
        return ((end.tv_sec - init.tv_sec) * 1000000) + (static_cast<double>((end.tv_nsec - init.tv_nsec)) / 1000);
    #endif


int main(int argc, char* argv[])

    uint64 val = 0x039F039F039F039F;
    uint64 a512[] =  val, val, val, val, val, val, val, val ;
    uint64 a320[] =  0, 0, 0, 0, 0 ;
    int max_cnt = 1000000;
    timesruct init, end;
    std::cout << std::hex;

    dotick(init);
    for (int i = 0; i < max_cnt; ++i) 
        pack512to320_loop(a512, a320);
    
    dotick(end);
    printit(a320);
    // rough estimate of timing / divide by iterations
    std::cout << "avg. us = " << (elapsed_us(init, end) / max_cnt) << " us" << std::endl;

    dotick(init);
    for (int i = 0; i < max_cnt; ++i) 
        pack512to320_manual(a512, a320);
    
    dotick(end);
    printit(a320);
    // rough estimate of timing / divide by iterations
    std::cout << "avg. us = " << (elapsed_us(init, end) / max_cnt) << " us" << std::endl;

    dotick(init);
    for (int i = 0; i < max_cnt; ++i) 
        pack512to320_manual_loop(a512, a320);
    
    dotick(end);
    printit(a320);
    // rough estimate of timing / divide by iterations
    std::cout << "avg. us = " << (elapsed_us(init, end) / max_cnt) << " us" << std::endl;

    return 0;

同样,这只是通用测试代码,您的结果可能会有所不同。

希望能有所帮助。

【讨论】:

以上是关于在未对齐的字节边界上有效地打包 10 位数据的主要内容,如果未能解决你的问题,请参考以下文章

计算机组成原理——大小端模式与边界对齐

计算机组成原理——大小端模式与边界对齐

如何在 GCC 的 32 字节边界处对齐堆栈?

C++11:16 字节原子<> 变量是不是在 16 字节边界上自动对齐,允许 CMPXCHG16B 指令?

SSE 向量重新对齐?

C语言-字节对齐