使用 numba 加速 for 循环
Posted
技术标签:
【中文标题】使用 numba 加速 for 循环【英文标题】:Use numba to speed up for loop 【发布时间】:2016-06-17 09:59:51 【问题描述】:据我所知,numba 可以显着加快 Python 程序的速度。使用 numba 可以提高程序的时间效率吗?
import numpy as np
def f_big(A, k, std_A, std_k, mean_A=10, mean_k=0.2, hh=100):
return ( 1 / (std_A * std_k * 2 * np.pi) ) * A * (hh/50) ** k * np.exp( -1*(k - mean_k)**2 / (2 * std_k **2 ) - (A - mean_A)**2 / (2 * std_A**2))
outer_sum = 0
dk = 0.000001
for k in np.arange(dk,0.4, dk):
inner_sum = 0
for A in np.arange(dk, 20, dk):
inner_sum += dk * f_big(A, k, 1e-5, 1e-5)
outer_sum += inner_sum * dk
print outer_sum
【问题讨论】:
【参考方案1】:是的,这是 Numba 真正解决的问题。我更改了您的 dk
值,因为它对于简单的演示来说是不明智的。代码如下:
import numpy as np
import numba as nb
def f_big(A, k, std_A, std_k, mean_A=10, mean_k=0.2, hh=100):
return ( 1 / (std_A * std_k * 2 * np.pi) ) * A * (hh/50) ** k * np.exp( -1*(k - mean_k)**2 / (2 * std_k **2 ) - (A - mean_A)**2 / (2 * std_A**2))
def func():
outer_sum = 0
dk = 0.01 #0.000001
for k in np.arange(dk, 0.4, dk):
inner_sum = 0
for A in np.arange(dk, 20, dk):
inner_sum += dk * f_big(A, k, 1e-5, 1e-5)
outer_sum += inner_sum * dk
return outer_sum
@nb.jit(nopython=True)
def f_big_nb(A, k, std_A, std_k, mean_A=10, mean_k=0.2, hh=100):
return ( 1 / (std_A * std_k * 2 * np.pi) ) * A * (hh/50) ** k * np.exp( -1*(k - mean_k)**2 / (2 * std_k **2 ) - (A - mean_A)**2 / (2 * std_A**2))
@nb.jit(nopython=True)
def func_nb():
outer_sum = 0
dk = 0.01 #0.000001
X = np.arange(dk, 0.4, dk)
Y = np.arange(dk, 20, dk)
for i in xrange(X.shape[0]):
k = X[i] # faster to do lookup than iterate over an array directly
inner_sum = 0
for j in xrange(Y.shape[0]):
A = Y[j]
inner_sum += dk * f_big_nb(A, k, 1e-5, 1e-5)
outer_sum += inner_sum * dk
return outer_sum
然后是时间安排:
In [7]: np.allclose(func(), func_nb())
Out[7]: True
In [8]: %timeit func()
1 loops, best of 3: 222 ms per loop
In [9]: %timeit func_nb()
The slowest run took 419.10 times longer than the fastest. This could mean that an intermediate result is being cached
1000 loops, best of 3: 362 µs per loop
所以 numba 版本在我的笔记本电脑上快了大约 600 倍。
【讨论】:
可能很挑剔,但您可以使用@nb.njit
而不使用 nopython=True
,而不是使用 @nb.jit(nopython=True)
。
@MSeifert 我倾向于习惯性地使用这种形式,因为我会经常对其进行参数化,以便在测试期间轻松地来回切换
xrange
应该是range
,对吧?
使用python3时应该是range
。早在 2016 年,当我最初做出回应时,我仍然主要使用 python2,其中xrange
是有效的。以上是关于使用 numba 加速 for 循环的主要内容,如果未能解决你的问题,请参考以下文章