射线调谐试验的检查点最佳模型
Posted
技术标签:
【中文标题】射线调谐试验的检查点最佳模型【英文标题】:Checkpoint best model for a trial in ray tune 【发布时间】:2020-12-13 10:06:26 【问题描述】:所以我只是运行了一个tune
实验并得到以下输出:
+--------------------+------------+-------+-------------+----------------+--------+------------+
| Trial name | status | loc | lr | weight_decay | loss | accuracy |
|--------------------+------------+-------+-------------+----------------+--------+------------|
| trainable_13720f86 | TERMINATED | | 0.00116961 | 0.00371219 | 0.673 | 0.7977 |
| trainable_13792744 | TERMINATED | | 0.109529 | 0.0862344 | 0.373 | 0.8427 |
| trainable_137ecd98 | TERMINATED | | 4.35062e-06 | 0.0261442 | 0.6993 | 0.7837 |
| trainable_1383f9d0 | TERMINATED | | 1.37858e-05 | 0.0974182 | 0.4538 | 0.8428 |
| trainable_13892f72 | TERMINATED | | 0.0335583 | 0.0403495 | 0.3399 | 0.8618 |
| trainable_138dd720 | TERMINATED | | 0.00858623 | 0.0695453 | 0.3415 | 0.8612 |
| trainable_1395570c | TERMINATED | | 4.6309e-05 | 0.0172459 | 0.39 | 0.8283 |
| trainable_139ce148 | TERMINATED | | 2.32951e-05 | 0.0787076 | 0.3641 | 0.8512 |
| trainable_13a848ee | TERMINATED | | 0.00431763 | 0.0341105 | 0.3415 | 0.8611 |
| trainable_13ad0a78 | TERMINATED | | 0.0145063 | 0.050807 | 0.3668 | 0.8398 |
| trainable_13b3342a | TERMINATED | | 5.96148e-06 | 0.0110345 | 0.3418 | 0.8608 |
| trainable_13bd4d3e | TERMINATED | | 1.82617e-06 | 0.0655128 | 0.3667 | 0.8501 |
| trainable_13c45a2a | TERMINATED | | 0.0459573 | 0.0224991 | 0.3432 | 0.8516 |
| trainable_13d561d0 | TERMINATED | | 0.00060595 | 0.092522 | 0.3389 | 0.8623 |
| trainable_13dcb962 | TERMINATED | | 0.000171044 | 0.0449039 | 0.3429 | 0.8584 |
| trainable_13e6fd32 | TERMINATED | | 0.000104752 | 0.089106 | 0.3497 | 0.8571 |
| trainable_13ecd2ac | TERMINATED | | 0.000793432 | 0.0477341 | 0.6007 | 0.8051 |
| trainable_13f27464 | TERMINATED | | 0.0750381 | 0.0685323 | 0.3359 | 0.8616 |
| trainable_13f80b40 | TERMINATED | | 1.3946e-06 | 0.0192844 | 0.5615 | 0.8146 |
| trainable_13fdf6e0 | TERMINATED | | 9.4748e-06 | 0.0542356 | 0.3546 | 0.8493 |
+--------------------+------------+-------+-------------+----------------+--------+------------+
但是当我查看单个结果时,我发现对于第三次试验 (trainable_137ecd98
),尽管它的最终准确度很低,但它的迭代准确度高于其他试验 (89.8%):
如果我想检查点并报告给定试验达到的最高精度(或最佳其他指标),用户的意图是跟踪每次试验的best_metric
,并在何时编写自定义检查点best_metric
更新了吗?
我看到tune.run
中有一个checkpoint_at_end
选项,但最常见的用例不是checkpoint_if_best
,因为试验的最后一次训练迭代很少是最好的?
谢谢!
【问题讨论】:
【参考方案1】:如果您只想为每次试验保留 1 个最佳检查点,您可以这样做
tune.run(keep_checkpoints_num=1, checkpoint_score_attr="accuracy")
如果你想保留多个检查点,但又想在实验结束后获得最好的一个,你可以这样做:
analysis = tune.run(...)
# Gets best trial based on max accuracy across all training iterations.
best_trial = analysis.get_best_trial(metric="accuracy", mode="max", scope="all")
# Gets best checkpoint for trial based on accuracy.
best_checkpoint = analysis.get_best_checkpoint(best_trial, metric="accuracy")
【讨论】:
以上是关于射线调谐试验的检查点最佳模型的主要内容,如果未能解决你的问题,请参考以下文章
将 android-opengl 上的触摸转换为射线/矢量并检查它是不是击中平面