在谷歌地球引擎上将一层剪裁到另一层的边界
Posted
技术标签:
【中文标题】在谷歌地球引擎上将一层剪裁到另一层的边界【英文标题】:Clipping one layer to the boundaries of another layer on google earth engine 【发布时间】:2018-10-30 22:58:50 【问题描述】:所以我试图将一层 (NDVI) 剪辑到安大略省玉米田的边界。这是我到目前为止的代码,但它似乎不起作用。我不确定你是否真的可以将图层剪辑到其他图层,我知道你可以预先收集图像,但是关于如何解决这个问题的一些输入会很棒。感谢您的帮助。
var landcover_crops = ee.ImageCollection("AAFC/ACI")
// Load a collection of Landsat TOA reflectance images.
var landsatCollection = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA');
// The dependent variable we are modeling.
var dependent = 'NDVI';
// The number of cycles per year to model.
var harmonics = 1;
// Make a list of harmonic frequencies to model.
// These also serve as band name suffixes.
var harmonicFrequencies = ee.List.sequence(1, harmonics);
// Function to get a sequence of band names for harmonic terms.
var constructBandNames = function(base, list)
return ee.List(list).map(function(i)
return ee.String(base).cat(ee.Number(i).int());
);
;
// Construct lists of names for the harmonic terms.
var cosNames = constructBandNames('cos_', harmonicFrequencies);
var sinNames = constructBandNames('sin_', harmonicFrequencies);
// Independent variables.
var independents = ee.List(['constant', 't'])
.cat(cosNames).cat(sinNames);
// Function to mask clouds in Landsat 8 imagery.
var maskClouds = function(image)
var score = ee.Algorithms.Landsat.simpleCloudScore(image).select('cloud');
var mask = score.lt(10);
return image.updateMask(mask);
;
// Function to add an NDVI band, the dependent variable.
var addNDVI = function(image)
return image
.addBands(image.normalizedDifference(['B5', 'B4'])
.rename('NDVI'))
.float();
;
// Function to add a time band.
var addDependents = function(image)
// Compute time in fractional years since the epoch.
var years = image.date().difference('2017-01-01', 'year');
var timeRadians = ee.Image(years.multiply(2 * Math.PI)).rename('t');
var constant = ee.Image(1);
return image.addBands(constant).addBands(timeRadians.float());
;
// Function to compute the specified number of harmonics
// and add them as bands. Assumes the time band is present.
var addHarmonics = function(freqs)
return function(image)
// Make an image of frequencies.
var frequencies = ee.Image.constant(freqs);
// This band should represent time in radians.
var time = ee.Image(image).select('t');
// Get the cosine terms.
var cosines = time.multiply(frequencies).cos().rename(cosNames);
// Get the sin terms.
var sines = time.multiply(frequencies).sin().rename(sinNames);
return image.addBands(cosines).addBands(sines);
;
;
// Filter to the area of interest, mask clouds, add variables.
var harmonicLandsat = landsatCollection
.filterBounds(geometry2)
.map(maskClouds)
.map(addNDVI)
.map(addDependents)
.map(addHarmonics(harmonicFrequencies));
// The output of the regression reduction is a 4x1 array image.
var harmonicTrend = harmonicLandsat
.select(independents.add(dependent))
.reduce(ee.Reducer.linearRegression(independents.length(), 1));
// Turn the array image into a multi-band image of coefficients.
var harmonicTrendCoefficients = harmonicTrend.select('coefficients')
.arrayProject([0])
.arrayFlatten([independents]);
// Compute fitted values.
var fittedHarmonic = harmonicLandsat.map(function(image)
return image.addBands(
image.select(independents)
.multiply(harmonicTrendCoefficients)
.reduce('sum')
.rename('fitted'));
);
// Plot the fitted model and the original data at the ROI.
print(ui.Chart.image.series(fittedHarmonic.select(['fitted','NDVI']),
geometry2, ee.Reducer.mean(), 100)
.setOptions(
title: 'Harmonic model: original and fitted values',
lineWidth: 1,
pointSize: 3,
));
// Pull out the three bands we're going to visualize.
var sin = harmonicTrendCoefficients.select('sin_1');
var cos = harmonicTrendCoefficients.select('cos_1');
// Do some math to turn the first-order Fourier model into
// hue, saturation, and value in the range[0,1].
var magnitude = cos.hypot(sin).multiply(5);
var phase = sin.atan2(cos).unitScale(-Math.PI, Math.PI);
var val = harmonicLandsat.select('NDVI').reduce('mean');
// Turn the HSV data into an RGB image and add it to the map.
var seasonality = ee.Image.cat(phase, magnitude, val).hsvToRgb();
Map.centerObject(geometry2, 11);
Map.addLayer(seasonality, , 'Seasonality');
Map.addLayer(geometry2, , 'corn_ndvi');
//need to change the image collection into a single image;
var crop2017 = landcover_crops
.filter(ee.Filter.date('2017-01-01', '2017-12-31'))//select for 2017 data
.first(); //collapses the data
//find what band names are, so we can filter the data on the right one
var bandNames = crop2017.bandNames();
print('Band names: ',bandNames);
//then need to select the band of interest...here there's only one band called
landcover
var crop2017_data=crop2017.select('landcover');
//then create various masks by selecting on the land cover value
var urban_mask = crop2017_data.eq(34); //creating the mask
var urban = crop2017_data.mask(urban_mask); //masking the data
var corn_mask = crop2017_data.eq(147);
var corn = crop2017_data.mask(corn_mask);
var soy_mask = crop2017_data.eq(158);
var soy = crop2017_data.mask(soy_mask);
var hay_mask = crop2017_data.eq(122);
var hay = crop2017_data.mask(hay_mask);
var grassland_mask = crop2017_data.eq(110);
var grassland = crop2017_data.mask(grassland_mask);
//Finally, add the masks to the map to make sure they are right
Map.addLayer(urban,undefined,'Urban');
Map.addLayer(corn,undefined,'Corn');
Map.addLayer(soy,undefined,'Soy');
Map.addLayer(hay,undefined,'Hay');
Map.addLayer(grassland,undefined,'Grassland');
//Can clip the mask to show just ontario
var crop2017_ontario = crop2017.clip(ontario);
var corn_ontario = corn.clip(ontario);
var soy_ontario = soy.clip(ontario);
var urban_ontario = urban.clip(ontario);
Map.addLayer(crop2017_ontario,undefined,'All Crops Ontario');
Map.addLayer(corn_ontario,undefined,"Corn Ontario");
Map.addLayer(soy_ontario,undefined,'Soy Ontario');
Map.addLayer(urban_ontario,undefined,'Urban Ontario');
// Composite an image collection and clip it to a boundary.
// Clip to the output image to the Nevada and Arizona state boundaries.
var clipped = seasonality.clipToCollection(corn_ontario);
// Display the result.
Map.setCenter(-80.24, 43.54);
Map.addLayer(clipped, 'clipped composite');
【问题讨论】:
【参考方案1】:如果您想将 NDVI 图像剪辑到玉米图像的实际边界,您可以使用var clipped = ndvi.clip(corn.geometry())
。每个图像都有一个与之关联的几何对象,并且剪辑函数需要一个几何作为输入。
如果您只想将 NDVI 值保留在玉米所在的位置,则应使用var masked = ndvi.updateMask(corn)
。这只会保留也是玉米像素的 NDVI 像素。
我尝试运行您的代码,但您发布的代码中似乎有些几何图形不可用,因此很难确定您的代码到底出了什么问题。我希望这有帮助!如果没有,只需将链接发送到您正在工作的代码以及导致问题的行。
【讨论】:
以上是关于在谷歌地球引擎上将一层剪裁到另一层的边界的主要内容,如果未能解决你的问题,请参考以下文章
在谷歌地球上下载的带WGS84坐标的影像怎样在ARCgis中投影为北京5
Android Intent FileProvider“权限被拒绝”在谷歌地球中打开KML文件?
如何在谷歌应用引擎上将帖子从数据库异步加载到 django 模板?