Matplotlib 轴具有两个比例共享原点
Posted
技术标签:
【中文标题】Matplotlib 轴具有两个比例共享原点【英文标题】:Matplotlib axis with two scales shared origin 【发布时间】:2012-05-15 22:55:57 【问题描述】:我需要两个在 Matplotlib 中覆盖两个具有不同 Y 轴刻度的数据集。数据包含正值和负值。我希望两个轴共享一个原点,但 Matplotlib 默认情况下不对齐两个刻度。
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax2 = ax1.twinx()
ax1.bar(range(6), (2, -2, 1, 0, 0, 0))
ax2.plot(range(6), (0, 2, 8, -2, 0, 0))
plt.show()
我想可以使用.get_ylim()
和.set_ylim()
执行一些计算,两个对齐两个比例。有更简单的解决方案吗?
【问题讨论】:
【参考方案1】:这可能不是您想要的,但这帮助我将整数排列在两个不同的垂直轴上:
ax1.set_ylim(0,4000)
ax2.set_ylim(0,120)
ax2.set_yticks(np.linspace(ax2.get_yticks()[0], ax2.get_yticks()[-1], len(ax1.get_yticks())))
【讨论】:
【参考方案2】:我需要对齐两个子图,但不需要对齐它们的零点。其他解决方案对我来说不太奏效。
我的程序的主要代码如下所示。子图未对齐。此外,我只更改 align_yaxis
函数并保持所有其他代码相同。
import matplotlib.pyplot as plt
def align_yaxis(ax1, v1, ax2, v2):
return 0
x = range(10)
y1 = [3.2, 1.3, -0.3, 0.4, 2.3, -0.9, 0.2, 0.1, 1.3, -3.4]
y2, s = [], 100
for i in y1:
s *= 1 + i/100
y2.append(s)
fig = plt.figure()
ax1 = fig.add_subplot()
ax2 = ax1.twinx()
ax1.axhline(y=0, color='k', linestyle='-', linewidth=0.5)
ax1.bar(x, y1, color='tab:blue')
ax2.plot(x, y2, color='tab:red')
fig.tight_layout()
align_yaxis(ax1, 0, ax2, 100)
plt.show()
Picture of not aligned subplots
使用@HYRY 的解决方案,我得到了对齐的子图,但第二个子图不在图中。你看不到它。
def align_yaxis(ax1, v1, ax2, v2):
"""adjust ax2 ylimit so that v2 in ax2 is aligned to v1 in ax1"""
_, y1 = ax1.transData.transform((0, v1))
_, y2 = ax2.transData.transform((0, v2))
inv = ax2.transData.inverted()
_, dy = inv.transform((0, 0)) - inv.transform((0, y1-y2))
miny, maxy = ax2.get_ylim()
ax2.set_ylim(miny+dy, maxy+dy)
Picture without second subplot
使用@drevicko 的解决方案,我也得到了对齐的情节。但是现在第一个子图已经不存在了,第一个 Y 轴很奇怪。
def align_yaxis(ax1, v1, ax2, v2):
"""adjust ax2 ylimit so that v2 in ax2 is aligned to v1 in ax1"""
_, y1 = ax1.transData.transform((0, v1))
_, y2 = ax2.transData.transform((0, v2))
adjust_yaxis(ax2,(y1-y2)/2,v2)
adjust_yaxis(ax1,(y2-y1)/2,v1)
def adjust_yaxis(ax,ydif,v):
"""shift axis ax by ydiff, maintaining point v at the same location"""
inv = ax.transData.inverted()
_, dy = inv.transform((0, 0)) - inv.transform((0, ydif))
miny, maxy = ax.get_ylim()
miny, maxy = miny - v, maxy - v
if -miny>maxy or (-miny==maxy and dy > 0):
nminy = miny
nmaxy = miny*(maxy+dy)/(miny+dy)
else:
nmaxy = maxy
nminy = maxy*(miny+dy)/(maxy+dy)
ax.set_ylim(nminy+v, nmaxy+v)
Picture without firstsubplot
所以我稍微调整了@drevicko 的解决方案,得到了我想要的。
def align_yaxis(ax1, v1, ax2, v2):
"""adjust ax2 ylimit so that v2 in ax2 is aligned to v1 in ax1"""
_, y1 = ax1.transData.transform((0, v1))
_, y2 = ax2.transData.transform((0, v2))
adjust_yaxis(ax1,(y2 - y1)/2,v1)
adjust_yaxis(ax2,(y1 - y2)/2,v2)
def adjust_yaxis(ax,ydif,v):
"""shift axis ax by ydiff, maintaining point v at the same location"""
inv = ax.transData.inverted()
_, dy = inv.transform((0, 0)) - inv.transform((0, ydif))
miny, maxy = ax.get_ylim()
nminy = miny - v + dy - abs(dy)
nmaxy = maxy - v + dy + abs(dy)
ax.set_ylim(nminy+v, nmaxy+v)
Subplots as I've expected them to look
【讨论】:
【参考方案3】:@Tim 的解决方案适用于两个以上的轴:
import numpy as np
def align_yaxis(axes):
y_lims = np.array([ax.get_ylim() for ax in axes])
# force 0 to appear on all axes, comment if don't need
y_lims[:, 0] = y_lims[:, 0].clip(None, 0)
y_lims[:, 1] = y_lims[:, 1].clip(0, None)
# normalize all axes
y_mags = (y_lims[:,1] - y_lims[:,0]).reshape(len(y_lims),1)
y_lims_normalized = y_lims / y_mags
# find combined range
y_new_lims_normalized = np.array([np.min(y_lims_normalized), np.max(y_lims_normalized)])
# denormalize combined range to get new axes
new_lims = y_new_lims_normalized * y_mags
for i, ax in enumerate(axes):
ax.set_ylim(new_lims[i])
【讨论】:
【参考方案4】:我已经从上面编写了一个解决方案,它将对齐任意数量的轴:
def align_yaxis_np(axes):
"""Align zeros of the two axes, zooming them out by same ratio"""
axes = np.array(axes)
extrema = np.array([ax.get_ylim() for ax in axes])
# reset for divide by zero issues
for i in range(len(extrema)):
if np.isclose(extrema[i, 0], 0.0):
extrema[i, 0] = -1
if np.isclose(extrema[i, 1], 0.0):
extrema[i, 1] = 1
# upper and lower limits
lowers = extrema[:, 0]
uppers = extrema[:, 1]
# if all pos or all neg, don't scale
all_positive = False
all_negative = False
if lowers.min() > 0.0:
all_positive = True
if uppers.max() < 0.0:
all_negative = True
if all_negative or all_positive:
# don't scale
return
# pick "most centered" axis
res = abs(uppers+lowers)
min_index = np.argmin(res)
# scale positive or negative part
multiplier1 = abs(uppers[min_index]/lowers[min_index])
multiplier2 = abs(lowers[min_index]/uppers[min_index])
for i in range(len(extrema)):
# scale positive or negative part based on which induces valid
if i != min_index:
lower_change = extrema[i, 1] * -1*multiplier2
upper_change = extrema[i, 0] * -1*multiplier1
if upper_change < extrema[i, 1]:
extrema[i, 0] = lower_change
else:
extrema[i, 1] = upper_change
# bump by 10% for a margin
extrema[i, 0] *= 1.1
extrema[i, 1] *= 1.1
# set axes limits
[axes[i].set_ylim(*extrema[i]) for i in range(len(extrema))]
4 个随机序列的示例(您可以在 4 组单独的 y 轴标签上看到离散范围):
【讨论】:
【参考方案5】:这里的其他答案似乎过于复杂,不一定适用于所有场景(例如 ax1 全部为负,ax2 全部为正)。有两种简单的方法总是有效的:
-
始终在两个 y 轴的图表中间放置 0
有点花哨,有点保留正负比,见下文
def align_yaxis(ax1, ax2):
y_lims = numpy.array([ax.get_ylim() for ax in [ax1, ax2]])
# force 0 to appear on both axes, comment if don't need
y_lims[:, 0] = y_lims[:, 0].clip(None, 0)
y_lims[:, 1] = y_lims[:, 1].clip(0, None)
# normalize both axes
y_mags = (y_lims[:,1] - y_lims[:,0]).reshape(len(y_lims),1)
y_lims_normalized = y_lims / y_mags
# find combined range
y_new_lims_normalized = numpy.array([numpy.min(y_lims_normalized), numpy.max(y_lims_normalized)])
# denormalize combined range to get new axes
new_lim1, new_lim2 = y_new_lims_normalized * y_mags
ax1.set_ylim(new_lim1)
ax2.set_ylim(new_lim2)
【讨论】:
【参考方案6】:在绘制以下两个点序列时,@drevicko 的回答对我来说失败了:
l1 = [0.03, -0.6, 1, 0.05]
l2 = [0.8, 0.9, 1, 1.1]
fig, ax1 = plt.subplots()
ax1.plot(l1)
ax2 = ax1.twinx()
ax2.plot(l2, color='r')
align_yaxis(ax1, 0, ax2, 0)
...所以这是我的版本:
def align_yaxis(ax1, ax2):
"""Align zeros of the two axes, zooming them out by same ratio"""
axes = (ax1, ax2)
extrema = [ax.get_ylim() for ax in axes]
tops = [extr[1] / (extr[1] - extr[0]) for extr in extrema]
# Ensure that plots (intervals) are ordered bottom to top:
if tops[0] > tops[1]:
axes, extrema, tops = [list(reversed(l)) for l in (axes, extrema, tops)]
# How much would the plot overflow if we kept current zoom levels?
tot_span = tops[1] + 1 - tops[0]
b_new_t = extrema[0][0] + tot_span * (extrema[0][1] - extrema[0][0])
t_new_b = extrema[1][1] - tot_span * (extrema[1][1] - extrema[1][0])
axes[0].set_ylim(extrema[0][0], b_new_t)
axes[1].set_ylim(t_new_b, extrema[1][1])
原则上,对齐零(或其他提供的解决方案接受的其他值)有无限不同的可能性:无论您在 y 轴上放置零的任何位置,都可以缩放两个系列中的每一个以使其适合。我们只是选择这样的位置,使得在变换之后,两者覆盖相同高度的垂直间隔。 或者换句话说,与非对齐图相比,我们将它们最小化为相同的因子。 (这不意味着 0 位于图的一半:例如,如果一个图全为负数而另一个全为正数,则会发生这种情况。)
Numpy 版本:
def align_yaxis_np(ax1, ax2):
"""Align zeros of the two axes, zooming them out by same ratio"""
axes = np.array([ax1, ax2])
extrema = np.array([ax.get_ylim() for ax in axes])
tops = extrema[:,1] / (extrema[:,1] - extrema[:,0])
# Ensure that plots (intervals) are ordered bottom to top:
if tops[0] > tops[1]:
axes, extrema, tops = [a[::-1] for a in (axes, extrema, tops)]
# How much would the plot overflow if we kept current zoom levels?
tot_span = tops[1] + 1 - tops[0]
extrema[0,1] = extrema[0,0] + tot_span * (extrema[0,1] - extrema[0,0])
extrema[1,0] = extrema[1,1] + tot_span * (extrema[1,0] - extrema[1,1])
[axes[i].set_ylim(*extrema[i]) for i in range(2)]
【讨论】:
【参考方案7】:为了确保保持 y 边界(因此没有数据点被移出绘图),并平衡两个 y 轴的调整,我对@HYRY 的回答做了一些补充:
def align_yaxis(ax1, v1, ax2, v2):
"""adjust ax2 ylimit so that v2 in ax2 is aligned to v1 in ax1"""
_, y1 = ax1.transData.transform((0, v1))
_, y2 = ax2.transData.transform((0, v2))
adjust_yaxis(ax2,(y1-y2)/2,v2)
adjust_yaxis(ax1,(y2-y1)/2,v1)
def adjust_yaxis(ax,ydif,v):
"""shift axis ax by ydiff, maintaining point v at the same location"""
inv = ax.transData.inverted()
_, dy = inv.transform((0, 0)) - inv.transform((0, ydif))
miny, maxy = ax.get_ylim()
miny, maxy = miny - v, maxy - v
if -miny>maxy or (-miny==maxy and dy > 0):
nminy = miny
nmaxy = miny*(maxy+dy)/(miny+dy)
else:
nmaxy = maxy
nminy = maxy*(miny+dy)/(maxy+dy)
ax.set_ylim(nminy+v, nmaxy+v)
【讨论】:
能否请您在 if/else 语句中添加 cmets。我发现这种方法仍然会切断数据。 很难在没有看到您的数据的情况下做到这一点(从而找出数据被切断的原因)。你能提供更多信息吗?也许调试并建议编辑? (在这里联系我,以防您进行编辑,以便我接受 - 代码编辑通常不被接受!) 谢谢,今天晚些时候我会整理一个可重现的例子。如果您能解释 if/else 和重新缩放的逻辑,那就太好了 好的,if
本质上是确定miny
或maxy
的绝对值是否更大(abs(miny)
只有在为负时才会更大)。换句话说,它离 0 点更远(嗯,实际上是 v
-point,因为你可以在某个值处对齐 v
)。
@devicko :这里很难展示一个可重现的例子,所以我创建了一个新问题***.com/questions/51766031/…【参考方案8】:
使用 align_yaxis() 函数:
import numpy as np
import matplotlib.pyplot as plt
def align_yaxis(ax1, v1, ax2, v2):
"""adjust ax2 ylimit so that v2 in ax2 is aligned to v1 in ax1"""
_, y1 = ax1.transData.transform((0, v1))
_, y2 = ax2.transData.transform((0, v2))
inv = ax2.transData.inverted()
_, dy = inv.transform((0, 0)) - inv.transform((0, y1-y2))
miny, maxy = ax2.get_ylim()
ax2.set_ylim(miny+dy, maxy+dy)
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax2 = ax1.twinx()
ax1.bar(range(6), (2, -2, 1, 0, 0, 0))
ax2.plot(range(6), (0, 2, 8, -2, 0, 0))
align_yaxis(ax1, 0, ax2, 0)
plt.show()
【讨论】:
这怎么可能是公认的答案?它几乎可以保证削减数据。以上是关于Matplotlib 轴具有两个比例共享原点的主要内容,如果未能解决你的问题,请参考以下文章
使用 Seaborn 和 Matplotlib 在热图和线图的共享子图中对齐 x 轴刻度