如何知道python包的特点? [关闭]
Posted
技术标签:
【中文标题】如何知道python包的特点? [关闭]【英文标题】:How to know the features of python package? [closed] 【发布时间】:2021-03-03 14:35:32 【问题描述】:我正在为我的项目解决优化问题。要使用 python 语言进行开发,可以使用几个包,例如mealpy、pyswarm 等。 我已经下载了这些包,但无法知道这些包的确切功能。比如mealpy包有好几种算法,那么怎么写一个代价函数,同一个代价函数怎么访问各种算法呢?
【问题讨论】:
【参考方案1】:一旦你导入了任何模块,你就可以这样做
help(module_name)
您可以获得该模块中所有功能的文档。你也可以这样做
dir(module_name)
这将简单地列出模块中定义的所有函数和变量的名称。
【讨论】:
【参考方案2】:在 jupyter 中有一个很酷的技巧,一旦你导入了模块,你可以在开头添加一个问号。下面简要介绍一下它的主要功能:
import pandas as pd
? pd
**pandas** is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, **real world** data analysis in Python. Additionally, it has the broader goal of becoming **the most powerful and flexible open source data analysis / manipulation tool available in any language**. It is already well on its way toward this goal. Main Features ------------- Here are just a few of the things that pandas does well: - Easy handling of missing data in floating point as well as non-floating point data. - Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects - Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let `Series`, `DataFrame`, etc. automatically align the data for you in computations. - Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data. - Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects. - Intelligent label-based slicing, fancy indexing, and subsetting of large data sets. - Intuitive merging and joining data sets. - Flexible reshaping and pivoting of data sets. - Hierarchical labeling of axes (possible to have multiple labels per tick). - Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving/loading data from the ultrafast HDF5 format. - Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.
但正如其他用户已经提到的那样,最好在谷歌上搜索为您提供一些示例的文档。
【讨论】:
以上是关于如何知道python包的特点? [关闭]的主要内容,如果未能解决你的问题,请参考以下文章
如何在 Python 中解密 OpenSSL AES 加密的文件?