如何在 TensorFlow 中使用批量标准化?
Posted
技术标签:
【中文标题】如何在 TensorFlow 中使用批量标准化?【英文标题】:How could I use batch normalization in TensorFlow? 【发布时间】:2016-03-01 04:58:36 【问题描述】:我想在 TensorFlow 中使用 批量标准化。我在core/ops/nn_ops.cc
中找到了相关的 C++ 源代码。但是,我没有在 tensorflow.org 上找到它。
BN 在 MLP 和 CNN 中有不同的语义,所以我不确定这个 BN 到底是做什么的。
我也没有找到名为MovingMoments
的方法。
【问题讨论】:
我相信它现在有一个文档:tensorflow.org/versions/r0.9/api_docs/python/… 我不认为有这样的 tf.Op (BatchNormWithGlobalNormalization) 了 我觉得有官方BN层github.com/tensorflow/tensorflow/blob/… 我在找How to use Batch Normalization with tflearn的时候来到这里 【参考方案1】:2016 年 7 月更新在 TensorFlow 中使用批量标准化的最简单方法是通过 contrib/layers、tflearn 或 slim 中提供的更高级别的接口。
如果你想 DIY,上一个答案:
自发布以来,文档字符串已得到改进 - 请参阅 docs comment in the master branch 而不是您找到的那个。它特别说明了它是来自tf.nn.moments
的输出。
您可以在batch_norm test code 中看到一个非常简单的使用示例。对于更真实的使用示例,我在帮助器类下方包含了我为自己使用而草草写下的使用说明(不提供任何保证!):
"""A helper class for managing batch normalization state.
This class is designed to simplify adding batch normalization
(http://arxiv.org/pdf/1502.03167v3.pdf) to your model by
managing the state variables associated with it.
Important use note: The function get_assigner() returns
an op that must be executed to save the updated state.
A suggested way to do this is to make execution of the
model optimizer force it, e.g., by:
update_assignments = tf.group(bn1.get_assigner(),
bn2.get_assigner())
with tf.control_dependencies([optimizer]):
optimizer = tf.group(update_assignments)
"""
import tensorflow as tf
class ConvolutionalBatchNormalizer(object):
"""Helper class that groups the normalization logic and variables.
Use:
ewma = tf.train.ExponentialMovingAverage(decay=0.99)
bn = ConvolutionalBatchNormalizer(depth, 0.001, ewma, True)
update_assignments = bn.get_assigner()
x = bn.normalize(y, train=training?)
(the output x will be batch-normalized).
"""
def __init__(self, depth, epsilon, ewma_trainer, scale_after_norm):
self.mean = tf.Variable(tf.constant(0.0, shape=[depth]),
trainable=False)
self.variance = tf.Variable(tf.constant(1.0, shape=[depth]),
trainable=False)
self.beta = tf.Variable(tf.constant(0.0, shape=[depth]))
self.gamma = tf.Variable(tf.constant(1.0, shape=[depth]))
self.ewma_trainer = ewma_trainer
self.epsilon = epsilon
self.scale_after_norm = scale_after_norm
def get_assigner(self):
"""Returns an EWMA apply op that must be invoked after optimization."""
return self.ewma_trainer.apply([self.mean, self.variance])
def normalize(self, x, train=True):
"""Returns a batch-normalized version of x."""
if train:
mean, variance = tf.nn.moments(x, [0, 1, 2])
assign_mean = self.mean.assign(mean)
assign_variance = self.variance.assign(variance)
with tf.control_dependencies([assign_mean, assign_variance]):
return tf.nn.batch_norm_with_global_normalization(
x, mean, variance, self.beta, self.gamma,
self.epsilon, self.scale_after_norm)
else:
mean = self.ewma_trainer.average(self.mean)
variance = self.ewma_trainer.average(self.variance)
local_beta = tf.identity(self.beta)
local_gamma = tf.identity(self.gamma)
return tf.nn.batch_norm_with_global_normalization(
x, mean, variance, local_beta, local_gamma,
self.epsilon, self.scale_after_norm)
请注意,我将其称为 ConvolutionalBatchNormalizer
,因为它使用 tf.nn.moments
对轴 0、1 和 2 求和,而对于非卷积使用,您可能只需要轴 0。
如果您使用它,我们将不胜感激。
【讨论】:
我很难将其应用于我在 LSTM 网络中重用的 convnet 子图。默认情况下,它为应用子图的每个时间步创建一个不同的规范化器。有什么想法可以使它在子图的所有应用程序上标准化? 您是否尝试在子图外部创建 bn 并将其传递给子图构造函数?bn = Conv...er(args); ... createSubgraph(bn, args);
然后在子图中调用 bn.normalize
。
我不明白为什么在这个例子中你在测试阶段计算移动平均线?
相反 - 在训练期间 (if train:
),它计算输入批次 (tf.nn.moments(x, [0, 1, 2])
) 的均值和标准差。在评估/测试期间,它会提取保存的移动平均值 (self.ewma_trainer.average(self.mean)
)。令人困惑的可能是调用 ewma 的 average
方法返回存储的平均值,它不会更新它。更新由self.mean.assign(mean)
行完成,它将当前批次平均值存储到“self.mean”中,然后是ewma_trainer.apply
,它根据self.mean
更新EWMA
@dga:是的,我做到了,它运行了(之前导致错误),但我看到了奇怪的行为。我在github.com/tensorflow/tensorflow/blob/master/tensorflow/models/… 中构建了两次图表,并使用第二个来测试更大的火车和有效批次。通过批量标准化,我得到了增加/随机损失和累积。对于第二张图,而用于训练操作的第一张图显示出很好的减少损失。【参考方案2】:
以下对我来说很好,它不需要在外面调用 EMA-apply。
import numpy as np
import tensorflow as tf
from tensorflow.python import control_flow_ops
def batch_norm(x, n_out, phase_train, scope='bn'):
"""
Batch normalization on convolutional maps.
Args:
x: Tensor, 4D BHWD input maps
n_out: integer, depth of input maps
phase_train: boolean tf.Varialbe, true indicates training phase
scope: string, variable scope
Return:
normed: batch-normalized maps
"""
with tf.variable_scope(scope):
beta = tf.Variable(tf.constant(0.0, shape=[n_out]),
name='beta', trainable=True)
gamma = tf.Variable(tf.constant(1.0, shape=[n_out]),
name='gamma', trainable=True)
batch_mean, batch_var = tf.nn.moments(x, [0,1,2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.5)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(phase_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
return normed
例子:
import math
n_in, n_out = 3, 16
ksize = 3
stride = 1
phase_train = tf.placeholder(tf.bool, name='phase_train')
input_image = tf.placeholder(tf.float32, name='input_image')
kernel = tf.Variable(tf.truncated_normal([ksize, ksize, n_in, n_out],
stddev=math.sqrt(2.0/(ksize*ksize*n_out))),
name='kernel')
conv = tf.nn.conv2d(input_image, kernel, [1,stride,stride,1], padding='SAME')
conv_bn = batch_norm(conv, n_out, phase_train)
relu = tf.nn.relu(conv_bn)
with tf.Session() as session:
session.run(tf.initialize_all_variables())
for i in range(20):
test_image = np.random.rand(4,32,32,3)
sess_outputs = session.run([relu],
input_image.name: test_image, phase_train.name: True)
【讨论】:
感谢您的另一个回答:)。你的control_flow_ops.cond
是什么?是tf.control_flow_ops.cond
吗?我没有在张量流中找到它。您是否考虑过性能差异?因为如果控制依赖是在层中应用的,那么计算可能必须等待每一层而不是等待每一次迭代,会不会等待太多?我实际上使用的是你的版本,在第一层,因为它更简单,但我稍后会尝试全局版本。
我已经更新了答案。它是 tensorflow.python.control_flow_ops,尚未记录。我想 EMA-apply 不会花费太多时间,因为它是对长度通常为几百的向量的逐元素操作。但我还没有验证这一点。
我已经确认了@jrocks 在他的回答中所说的话,你的代码有点错误。请注意。
@myme5261314 @jrock 你是对的,看起来ema_apply_op
在测试期间也被调用了。我已经编辑了我的答案,将 phase_train
从 tf.Variable
更改为 python 布尔值。但是,现在您必须为训练和测试创建单独的图表。感谢您的反馈,并对我迟到的回复感到抱歉。
考虑到官方的 BN 层,你的代码真的有必要吗?代码:github.com/tensorflow/tensorflow/blob/…【参考方案3】:
由于最近有人对此进行了编辑,我想澄清一下,这不再是一个问题。
This answer 似乎不正确当 phase_train
设置为 false 时,它仍会更新 ema 均值和方差。这可以通过以下代码sn-p来验证。
x = tf.placeholder(tf.float32, [None, 20, 20, 10], name='input')
phase_train = tf.placeholder(tf.bool, name='phase_train')
# generate random noise to pass into batch norm
x_gen = tf.random_normal([50,20,20,10])
pt_false = tf.Variable(tf.constant(True))
#generate a constant variable to pass into batch norm
y = x_gen.eval()
[bn, bn_vars] = batch_norm(x, 10, phase_train)
tf.initialize_all_variables().run()
train_step = lambda: bn.eval(x:x_gen.eval(), phase_train:True)
test_step = lambda: bn.eval(x:y, phase_train:False)
test_step_c = lambda: bn.eval(x:y, phase_train:True)
# Verify that this is different as expected, two different x's have different norms
print(train_step()[0][0][0])
print(train_step()[0][0][0])
# Verify that this is same as expected, same x's (y) have same norm
print(train_step_c()[0][0][0])
print(train_step_c()[0][0][0])
# THIS IS DIFFERENT but should be they same, should only be reading from the ema.
print(test_step()[0][0][0])
print(test_step()[0][0][0])
【讨论】:
我已经更新了我的答案。原始版本中存在一个错误,即使在phase_train=False
时也会调用 ema_apply_op
。
感谢您的更新,仍然无法对您的主题发表评论(为代表欢呼),但看起来它现在应该可以工作了。也感谢@myme5261314。【参考方案4】:
所以一个简单的使用这个batchnorm类的例子:
from bn_class import *
with tf.name_scope('Batch_norm_conv1') as scope:
ewma = tf.train.ExponentialMovingAverage(decay=0.99)
bn_conv1 = ConvolutionalBatchNormalizer(num_filt_1, 0.001, ewma, True)
update_assignments = bn_conv1.get_assigner()
a_conv1 = bn_conv1.normalize(a_conv1, train=bn_train)
h_conv1 = tf.nn.relu(a_conv1)
【讨论】:
【参考方案5】:还有一个由开发人员编码的"official" batch normalization layer。他们没有关于如何使用它的很好的文档,但这里是如何使用它(根据我):
from tensorflow.contrib.layers.python.layers import batch_norm as batch_norm
def batch_norm_layer(x,train_phase,scope_bn):
bn_train = batch_norm(x, decay=0.999, center=True, scale=True,
updates_collections=None,
is_training=True,
reuse=None, # is this right?
trainable=True,
scope=scope_bn)
bn_inference = batch_norm(x, decay=0.999, center=True, scale=True,
updates_collections=None,
is_training=False,
reuse=True, # is this right?
trainable=True,
scope=scope_bn)
z = tf.cond(train_phase, lambda: bn_train, lambda: bn_inference)
return z
要实际使用它,您需要为train_phase
创建一个占位符,指示您是处于训练阶段还是推理阶段(如train_phase = tf.placeholder(tf.bool, name='phase_train')
)。它的值可以在推理或训练期间用tf.session
填充,如下所示:
test_error = sess.run(fetches=cross_entropy, feed_dict=x: batch_xtest, y_:batch_ytest, train_phase: False)
或在训练期间:
sess.run(fetches=train_step, feed_dict=x: batch_xs, y_:batch_ys, train_phase: True)
根据github 中的讨论,我很确定这是正确的。
似乎还有另一个有用的链接:
http://r2rt.com/implementing-batch-normalization-in-tensorflow.html
【讨论】:
请注意updates_collections=None
很重要。我不明白为什么,但它是。我知道的最好的解释是But what it is important is that either you pass updates_collections=None so the moving_mean and moving_variance are updated in-place, otherwise you will need gather the update_ops and make sure they are run.
,但我不太明白为什么这是一个解释,但根据经验,我观察到 MNIST 在无时表现良好,而在没有时表现糟糕。【参考方案6】:
使用 TensorFlow 内置的 batch_norm 层,下面是加载数据的代码,构建一个具有一个隐藏 ReLU 层和 L2 归一化的网络,并为隐藏层和外层引入批量归一化。这运行良好并且训练良好。仅供参考,此示例主要基于 Udacity 深度学习课程的数据和代码。 附:是的,其中一部分在前面的答案中以一种或另一种方式进行了讨论,但我决定将所有内容收集在一个代码中 sn-p 以便您获得使用批量标准化及其评估的整个网络训练过程的示例
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
pickle_file = '/home/maxkhk/Documents/Udacity/DeepLearningCourse/SourceCode/tensorflow/examples/udacity/notMNIST.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
image_size = 28
num_labels = 10
def reformat(dataset, labels):
dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32)
# Map 2 to [0.0, 1.0, 0.0 ...], 3 to [0.0, 0.0, 1.0 ...]
labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
#for NeuralNetwork model code is below
#We will use SGD for training to save our time. Code is from Assignment 2
#beta is the new parameter - controls level of regularization.
#Feel free to play with it - the best one I found is 0.001
#notice, we introduce L2 for both biases and weights of all layers
batch_size = 128
beta = 0.001
#building tensorflow graph
graph = tf.Graph()
with graph.as_default():
# Input data. For the training data, we use a placeholder that will be fed
# at run time with a training minibatch.
tf_train_dataset = tf.placeholder(tf.float32,
shape=(batch_size, image_size * image_size))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
#introduce batchnorm
tf_train_dataset_bn = tf.contrib.layers.batch_norm(tf_train_dataset)
#now let's build our new hidden layer
#that's how many hidden neurons we want
num_hidden_neurons = 1024
#its weights
hidden_weights = tf.Variable(
tf.truncated_normal([image_size * image_size, num_hidden_neurons]))
hidden_biases = tf.Variable(tf.zeros([num_hidden_neurons]))
#now the layer itself. It multiplies data by weights, adds biases
#and takes ReLU over result
hidden_layer = tf.nn.relu(tf.matmul(tf_train_dataset_bn, hidden_weights) + hidden_biases)
#adding the batch normalization layerhi()
hidden_layer_bn = tf.contrib.layers.batch_norm(hidden_layer)
#time to go for output linear layer
#out weights connect hidden neurons to output labels
#biases are added to output labels
out_weights = tf.Variable(
tf.truncated_normal([num_hidden_neurons, num_labels]))
out_biases = tf.Variable(tf.zeros([num_labels]))
#compute output
out_layer = tf.matmul(hidden_layer_bn,out_weights) + out_biases
#our real output is a softmax of prior result
#and we also compute its cross-entropy to get our loss
#Notice - we introduce our L2 here
loss = (tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
out_layer, tf_train_labels) +
beta*tf.nn.l2_loss(hidden_weights) +
beta*tf.nn.l2_loss(hidden_biases) +
beta*tf.nn.l2_loss(out_weights) +
beta*tf.nn.l2_loss(out_biases)))
#now we just minimize this loss to actually train the network
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
#nice, now let's calculate the predictions on each dataset for evaluating the
#performance so far
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(out_layer)
valid_relu = tf.nn.relu( tf.matmul(tf_valid_dataset, hidden_weights) + hidden_biases)
valid_prediction = tf.nn.softmax( tf.matmul(valid_relu, out_weights) + out_biases)
test_relu = tf.nn.relu( tf.matmul( tf_test_dataset, hidden_weights) + hidden_biases)
test_prediction = tf.nn.softmax(tf.matmul(test_relu, out_weights) + out_biases)
#now is the actual training on the ANN we built
#we will run it for some number of steps and evaluate the progress after
#every 500 steps
#number of steps we will train our ANN
num_steps = 3001
#actual training
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print("Initialized")
for step in range(num_steps):
# Pick an offset within the training data, which has been randomized.
# Note: we could use better randomization across epochs.
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
# Generate a minibatch.
batch_data = train_dataset[offset:(offset + batch_size), :]
batch_labels = train_labels[offset:(offset + batch_size), :]
# Prepare a dictionary telling the session where to feed the minibatch.
# The key of the dictionary is the placeholder node of the graph to be fed,
# and the value is the numpy array to feed to it.
feed_dict = tf_train_dataset : batch_data, tf_train_labels : batch_labels
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 500 == 0):
print("Minibatch loss at step %d: %f" % (step, l))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
print("Validation accuracy: %.1f%%" % accuracy(
valid_prediction.eval(), valid_labels))
print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
【讨论】:
如何获取数据集以尝试运行您的示例?即`'/home/maxkhk/Documents/Udacity/DeepLearningCourse/SourceCode/tensorflow/examples/udacity/notMNIST.pickle' ` @Pinocchio 这是 Udacity 的深度学习课程,它是在第一次作业中完成的,你可以在这里查看我的代码:github.com/MaxKHK/Udacity_DeepLearningAssignments/blob/master/… 训练期间好像没有更新batch_norm层的移动平均值【参考方案7】:您可以简单地使用内置的 batch_norm 层:
batch_norm = tf.cond(is_train,
lambda: tf.contrib.layers.batch_norm(prev, activation_fn=tf.nn.relu, is_training=True, reuse=None),
lambda: tf.contrib.layers.batch_norm(prev, activation_fn =tf.nn.relu, is_training=False, reuse=True))
prev 是前一层的输出(可以是全连接层或卷积层),is_train 是布尔占位符。只需使用 batch_norm 作为下一层的输入即可。
【讨论】:
您有没有将is_train
作为占位符传递的示例?我不能这样做,传递 python 布尔值不适用于 tf.cond
并在 if 分支中定义两个批处理规范给我“reuse=True 不能在没有 name_or_scope 的情况下使用”(即使我为它们指定了变量范围) ...
@sygi,可以使用tf.cast(True/False, tf.bool)
操作。
@sygi,是的,我知道,例如,您可以说:var1 = True or False
,然后说:tf.cast(var1, tf.bool)
。这应该可以正常工作
为什么将reuse=True
设置在并且仅在测试阶段?【参考方案8】:
从 TensorFlow 1.0(2017 年 2 月)开始,TensorFlow 本身还包含高级 tf.layers.batch_normalization
API。
使用起来超级简单:
# Set this to True for training and False for testing
training = tf.placeholder(tf.bool)
x = tf.layers.dense(input_x, units=100)
x = tf.layers.batch_normalization(x, training=training)
x = tf.nn.relu(x)
...除了它向图中添加了额外的操作(用于更新其均值和方差变量),它们不会成为您的训练操作的依赖项。您可以单独运行操作:
extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
sess.run([train_op, extra_update_ops], ...)
或手动添加更新操作作为训练操作的依赖项,然后正常运行训练操作:
extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(extra_update_ops):
train_op = optimizer.minimize(loss)
...
sess.run([train_op], ...)
【讨论】:
@MiniQuark 你能详细说明依赖关系吗?我不太明白那部分。 @mamafoku Batch Norm 算法需要计算整个训练集的均值和标准差。这些在训练期间计算,但在训练期间不使用,仅在推理期间。该计算是使用指数平均值完成的。它独立于训练的其余部分,因此您必须在每次训练迭代中“手动”运行指数平均计算步骤(即extra_update_ops
)以及常规训练操作,或者您可以使训练操作依赖于@ 987654327@(使用control_dependencies()
块)。希望这会有所帮助。
所以考虑到update_ups
的目的是更新移动均值和移动方差,如果我们只是测试一个预训练的网络,那么包含它是没有意义的,是否正确?
在卷积网络中应该使用axis
的什么值?
@gantzer89 没错。如果加载预训练网络,检查点将包括训练期间计算的均值和方差值。测试期间不应更新均值和方差。以上是关于如何在 TensorFlow 中使用批量标准化?的主要内容,如果未能解决你的问题,请参考以下文章
python 批量标准化,然后在tensorflow中激活ReLU。
Tensorflow 批量标准化:tf.contrib.layers.batch_norm