如何在 TensorFlow 中使用批量标准化?

Posted

技术标签:

【中文标题】如何在 TensorFlow 中使用批量标准化?【英文标题】:How could I use batch normalization in TensorFlow? 【发布时间】:2016-03-01 04:58:36 【问题描述】:

我想在 TensorFlow 中使用 批量标准化。我在core/ops/nn_ops.cc 中找到了相关的 C++ 源代码。但是,我没有在 tensorflow.org 上找到它。

BN 在 MLP 和 CNN 中有不同的语义,所以我不确定这个 BN 到底是做什么的。

我也没有找到名为MovingMoments 的方法。

【问题讨论】:

我相信它现在有一个文档:tensorflow.org/versions/r0.9/api_docs/python/… 我不认为有这样的 tf.Op (BatchNormWithGlobalNormalization) 了 我觉得有官方BN层github.com/tensorflow/tensorflow/blob/… 我在找How to use Batch Normalization with tflearn的时候来到这里 【参考方案1】:

2016 年 7 月更新在 TensorFlow 中使用批量标准化的最简单方法是通过 contrib/layers、tflearn 或 slim 中提供的更高级别的接口。

如果你想 DIY,上一个答案: 自发布以来,文档字符串已得到改进 - 请参阅 docs comment in the master branch 而不是您找到的那个。它特别说明了它是来自tf.nn.moments 的输出。

您可以在batch_norm test code 中看到一个非常简单的使用示例。对于更真实的使用示例,我在帮助器类下方包含了我为自己使用而草草写下的使用说明(不提供任何保证!):

"""A helper class for managing batch normalization state.                   

This class is designed to simplify adding batch normalization               
(http://arxiv.org/pdf/1502.03167v3.pdf) to your model by                    
managing the state variables associated with it.                            

Important use note:  The function get_assigner() returns                    
an op that must be executed to save the updated state.                      
A suggested way to do this is to make execution of the                      
model optimizer force it, e.g., by:                                         

  update_assignments = tf.group(bn1.get_assigner(),                         
                                bn2.get_assigner())                         
  with tf.control_dependencies([optimizer]):                                
    optimizer = tf.group(update_assignments)                                

"""

import tensorflow as tf


class ConvolutionalBatchNormalizer(object):
  """Helper class that groups the normalization logic and variables.        

  Use:                                                                      
      ewma = tf.train.ExponentialMovingAverage(decay=0.99)                  
      bn = ConvolutionalBatchNormalizer(depth, 0.001, ewma, True)           
      update_assignments = bn.get_assigner()                                
      x = bn.normalize(y, train=training?)                                  
      (the output x will be batch-normalized).                              
  """

  def __init__(self, depth, epsilon, ewma_trainer, scale_after_norm):
    self.mean = tf.Variable(tf.constant(0.0, shape=[depth]),
                            trainable=False)
    self.variance = tf.Variable(tf.constant(1.0, shape=[depth]),
                                trainable=False)
    self.beta = tf.Variable(tf.constant(0.0, shape=[depth]))
    self.gamma = tf.Variable(tf.constant(1.0, shape=[depth]))
    self.ewma_trainer = ewma_trainer
    self.epsilon = epsilon
    self.scale_after_norm = scale_after_norm

  def get_assigner(self):
    """Returns an EWMA apply op that must be invoked after optimization."""
    return self.ewma_trainer.apply([self.mean, self.variance])

  def normalize(self, x, train=True):
    """Returns a batch-normalized version of x."""
    if train:
      mean, variance = tf.nn.moments(x, [0, 1, 2])
      assign_mean = self.mean.assign(mean)
      assign_variance = self.variance.assign(variance)
      with tf.control_dependencies([assign_mean, assign_variance]):
        return tf.nn.batch_norm_with_global_normalization(
            x, mean, variance, self.beta, self.gamma,
            self.epsilon, self.scale_after_norm)
    else:
      mean = self.ewma_trainer.average(self.mean)
      variance = self.ewma_trainer.average(self.variance)
      local_beta = tf.identity(self.beta)
      local_gamma = tf.identity(self.gamma)
      return tf.nn.batch_norm_with_global_normalization(
          x, mean, variance, local_beta, local_gamma,
          self.epsilon, self.scale_after_norm)

请注意,我将其称为 ConvolutionalBatchNormalizer,因为它使用 tf.nn.moments 对轴 0、1 和 2 求和,而对于非卷积使用,您可能只需要轴 0。

如果您使用它,我们将不胜感激。

【讨论】:

我很难将其应用于我在 LSTM 网络中重用的 convnet 子图。默认情况下,它为应用子图的每个时间步创建一个不同的规范化器。有什么想法可以使它在子图的所有应用程序上标准化? 您是否尝试在子图外部创建 bn 并将其传递给子图构造函数? bn = Conv...er(args); ... createSubgraph(bn, args); 然后在子图中调用 bn.normalize 我不明白为什么在这个例子中你在测试阶段计算移动平均线? 相反 - 在训练期间 (if train:),它计算输入批次 (tf.nn.moments(x, [0, 1, 2])) 的均值和标准差。在评估/测试期间,它会提取保存的移动平均值 (self.ewma_trainer.average(self.mean))。令人困惑的可能是调用 ewma 的 average 方法返回存储的平均值,它不会更新它。更新由self.mean.assign(mean) 行完成,它将当前批次平均值存储到“self.mean”中,然后是ewma_trainer.apply,它根据self.mean更新EWMA @dga:是的,我做到了,它运行了(之前导致错误),但我看到了奇怪的行为。我在github.com/tensorflow/tensorflow/blob/master/tensorflow/models/… 中构建了两次图表,并使用第二个来测试更大的火车和有效批次。通过批量标准化,我得到了增加/随机损失和累积。对于第二张图,而用于训练操作的第一张图显示出很好的减少损失。【参考方案2】:

以下对我来说很好,它不需要在外面调用 EMA-apply。

import numpy as np
import tensorflow as tf
from tensorflow.python import control_flow_ops

def batch_norm(x, n_out, phase_train, scope='bn'):
    """
    Batch normalization on convolutional maps.
    Args:
        x:           Tensor, 4D BHWD input maps
        n_out:       integer, depth of input maps
        phase_train: boolean tf.Varialbe, true indicates training phase
        scope:       string, variable scope
    Return:
        normed:      batch-normalized maps
    """
    with tf.variable_scope(scope):
        beta = tf.Variable(tf.constant(0.0, shape=[n_out]),
                                     name='beta', trainable=True)
        gamma = tf.Variable(tf.constant(1.0, shape=[n_out]),
                                      name='gamma', trainable=True)
        batch_mean, batch_var = tf.nn.moments(x, [0,1,2], name='moments')
        ema = tf.train.ExponentialMovingAverage(decay=0.5)

        def mean_var_with_update():
            ema_apply_op = ema.apply([batch_mean, batch_var])
            with tf.control_dependencies([ema_apply_op]):
                return tf.identity(batch_mean), tf.identity(batch_var)

        mean, var = tf.cond(phase_train,
                            mean_var_with_update,
                            lambda: (ema.average(batch_mean), ema.average(batch_var)))
        normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
    return normed

例子:

import math

n_in, n_out = 3, 16
ksize = 3
stride = 1
phase_train = tf.placeholder(tf.bool, name='phase_train')
input_image = tf.placeholder(tf.float32, name='input_image')
kernel = tf.Variable(tf.truncated_normal([ksize, ksize, n_in, n_out],
                                   stddev=math.sqrt(2.0/(ksize*ksize*n_out))),
                                   name='kernel')
conv = tf.nn.conv2d(input_image, kernel, [1,stride,stride,1], padding='SAME')
conv_bn = batch_norm(conv, n_out, phase_train)
relu = tf.nn.relu(conv_bn)

with tf.Session() as session:
    session.run(tf.initialize_all_variables())
    for i in range(20):
        test_image = np.random.rand(4,32,32,3)
        sess_outputs = session.run([relu],
          input_image.name: test_image, phase_train.name: True)

【讨论】:

感谢您的另一个回答:)。你的control_flow_ops.cond 是什么?是tf.control_flow_ops.cond吗?我没有在张量流中找到它。您是否考虑过性能差异?因为如果控制依赖是在层中应用的,那么计算可能必须等待每一层而不是等待每一次迭代,会不会等待太多?我实际上使用的是你的版本,在第一层,因为它更简单,但我稍后会尝试全局版本。 我已经更新了答案。它是 tensorflow.python.control_flow_ops,尚未记录。我想 EMA-apply 不会花费太多时间,因为它是对长度通常为几百的向量的逐元素操作。但我还没有验证这一点。 我已经确认了@jrocks 在他的回答中所说的话,你的代码有点错误。请注意。 @myme5261314 @jrock 你是对的,看起来ema_apply_op 在测试期间也被调用了。我已经编辑了我的答案,将 phase_traintf.Variable 更改为 python 布尔值。但是,现在您必须为训练和测试创建单独的图表。感谢您的反馈,并对我迟到的回复感到抱歉。 考虑到官方的 BN 层,你的代码真的有必要吗?代码:github.com/tensorflow/tensorflow/blob/…【参考方案3】:

由于最近有人对此进行了编辑,我想澄清一下,这不再是一个问题。

This answer 似乎不正确当 phase_train 设置为 false 时,它​​仍会更新 ema 均值和方差。这可以通过以下代码sn-p来验证。

x = tf.placeholder(tf.float32, [None, 20, 20, 10], name='input')
phase_train = tf.placeholder(tf.bool, name='phase_train')

# generate random noise to pass into batch norm
x_gen = tf.random_normal([50,20,20,10])
pt_false = tf.Variable(tf.constant(True))

#generate a constant variable to pass into batch norm
y = x_gen.eval()

[bn, bn_vars] = batch_norm(x, 10, phase_train)

tf.initialize_all_variables().run()
train_step = lambda: bn.eval(x:x_gen.eval(), phase_train:True)
test_step = lambda: bn.eval(x:y, phase_train:False)
test_step_c = lambda: bn.eval(x:y, phase_train:True)

# Verify that this is different as expected, two different x's have different norms
print(train_step()[0][0][0])
print(train_step()[0][0][0])

# Verify that this is same as expected, same x's (y) have same norm
print(train_step_c()[0][0][0])
print(train_step_c()[0][0][0])

# THIS IS DIFFERENT but should be they same, should only be reading from the ema.
print(test_step()[0][0][0])
print(test_step()[0][0][0])

【讨论】:

我已经更新了我的答案。原始版本中存在一个错误,即使在 phase_train=False 时也会调用 ema_apply_op 感谢您的更新,仍然无法对您的主题发表评论(为代表欢呼),但看起来它现在应该可以工作了。也感谢@myme5261314。【参考方案4】:

所以一个简单的使用这个batchnorm类的例子:

from bn_class import *

with tf.name_scope('Batch_norm_conv1') as scope:
    ewma = tf.train.ExponentialMovingAverage(decay=0.99)                  
    bn_conv1 = ConvolutionalBatchNormalizer(num_filt_1, 0.001, ewma, True)           
    update_assignments = bn_conv1.get_assigner() 
    a_conv1 = bn_conv1.normalize(a_conv1, train=bn_train) 
    h_conv1 = tf.nn.relu(a_conv1)

【讨论】:

【参考方案5】:

还有一个由开发人员编码的"official" batch normalization layer。他们没有关于如何使用它的很好的文档,但这里是如何使用它(根据我):

from tensorflow.contrib.layers.python.layers import batch_norm as batch_norm

def batch_norm_layer(x,train_phase,scope_bn):
    bn_train = batch_norm(x, decay=0.999, center=True, scale=True,
    updates_collections=None,
    is_training=True,
    reuse=None, # is this right?
    trainable=True,
    scope=scope_bn)
    bn_inference = batch_norm(x, decay=0.999, center=True, scale=True,
    updates_collections=None,
    is_training=False,
    reuse=True, # is this right?
    trainable=True,
    scope=scope_bn)
    z = tf.cond(train_phase, lambda: bn_train, lambda: bn_inference)
    return z

要实际使用它,您需要为train_phase 创建一个占位符,指示您是处于训练阶段还是推理阶段(如train_phase = tf.placeholder(tf.bool, name='phase_train'))。它的值可以在推理或训练期间用tf.session 填充,如下所示:

test_error = sess.run(fetches=cross_entropy, feed_dict=x: batch_xtest, y_:batch_ytest, train_phase: False)

或在训练期间:

sess.run(fetches=train_step, feed_dict=x: batch_xs, y_:batch_ys, train_phase: True)

根据github 中的讨论,我很确定这是正确的。


似乎还有另一个有用的链接:

http://r2rt.com/implementing-batch-normalization-in-tensorflow.html

【讨论】:

请注意updates_collections=None 很重要。我不明白为什么,但它是。我知道的最好的解释是But what it is important is that either you pass updates_collections=None so the moving_mean and moving_variance are updated in-place, otherwise you will need gather the update_ops and make sure they are run.,但我不太明白为什么这是一个解释,但根据经验,我观察到 MNIST 在无时表现良好,而在没有时表现糟糕。【参考方案6】:

使用 TensorFlow 内置的 batch_norm 层,下面是加载数据的代码,构建一个具有一个隐藏 ReLU 层和 L2 归一化的网络,并为隐藏层和外层引入批量归一化。这运行良好并且训练良好。仅供参考,此示例主要基于 Udacity 深度学习课程的数据和代码。 附:是的,其中一部分在前面的答案中以一种或另一种方式进行了讨论,但我决定将所有内容收集在一个代码中 sn-p 以便您获得使用批量标准化及其评估的整个网络训练过程的示例

# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle

pickle_file = '/home/maxkhk/Documents/Udacity/DeepLearningCourse/SourceCode/tensorflow/examples/udacity/notMNIST.pickle'

with open(pickle_file, 'rb') as f:
  save = pickle.load(f)
  train_dataset = save['train_dataset']
  train_labels = save['train_labels']
  valid_dataset = save['valid_dataset']
  valid_labels = save['valid_labels']
  test_dataset = save['test_dataset']
  test_labels = save['test_labels']
  del save  # hint to help gc free up memory
  print('Training set', train_dataset.shape, train_labels.shape)
  print('Validation set', valid_dataset.shape, valid_labels.shape)
  print('Test set', test_dataset.shape, test_labels.shape)

image_size = 28
num_labels = 10

def reformat(dataset, labels):
  dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32)
  # Map 2 to [0.0, 1.0, 0.0 ...], 3 to [0.0, 0.0, 1.0 ...]
  labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
  return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)


def accuracy(predictions, labels):
  return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
          / predictions.shape[0])


#for NeuralNetwork model code is below
#We will use SGD for training to save our time. Code is from Assignment 2
#beta is the new parameter - controls level of regularization.
#Feel free to play with it - the best one I found is 0.001
#notice, we introduce L2 for both biases and weights of all layers

batch_size = 128
beta = 0.001

#building tensorflow graph
graph = tf.Graph()
with graph.as_default():
      # Input data. For the training data, we use a placeholder that will be fed
  # at run time with a training minibatch.
  tf_train_dataset = tf.placeholder(tf.float32,
                                    shape=(batch_size, image_size * image_size))
  tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
  tf_valid_dataset = tf.constant(valid_dataset)
  tf_test_dataset = tf.constant(test_dataset)

  #introduce batchnorm
  tf_train_dataset_bn = tf.contrib.layers.batch_norm(tf_train_dataset)


  #now let's build our new hidden layer
  #that's how many hidden neurons we want
  num_hidden_neurons = 1024
  #its weights
  hidden_weights = tf.Variable(
    tf.truncated_normal([image_size * image_size, num_hidden_neurons]))
  hidden_biases = tf.Variable(tf.zeros([num_hidden_neurons]))

  #now the layer itself. It multiplies data by weights, adds biases
  #and takes ReLU over result
  hidden_layer = tf.nn.relu(tf.matmul(tf_train_dataset_bn, hidden_weights) + hidden_biases)

  #adding the batch normalization layerhi()
  hidden_layer_bn = tf.contrib.layers.batch_norm(hidden_layer)

  #time to go for output linear layer
  #out weights connect hidden neurons to output labels
  #biases are added to output labels  
  out_weights = tf.Variable(
    tf.truncated_normal([num_hidden_neurons, num_labels]))  

  out_biases = tf.Variable(tf.zeros([num_labels]))  

  #compute output  
  out_layer = tf.matmul(hidden_layer_bn,out_weights) + out_biases
  #our real output is a softmax of prior result
  #and we also compute its cross-entropy to get our loss
  #Notice - we introduce our L2 here
  loss = (tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
    out_layer, tf_train_labels) +
    beta*tf.nn.l2_loss(hidden_weights) +
    beta*tf.nn.l2_loss(hidden_biases) +
    beta*tf.nn.l2_loss(out_weights) +
    beta*tf.nn.l2_loss(out_biases)))

  #now we just minimize this loss to actually train the network
  optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)

  #nice, now let's calculate the predictions on each dataset for evaluating the
  #performance so far
  # Predictions for the training, validation, and test data.
  train_prediction = tf.nn.softmax(out_layer)
  valid_relu = tf.nn.relu(  tf.matmul(tf_valid_dataset, hidden_weights) + hidden_biases)
  valid_prediction = tf.nn.softmax( tf.matmul(valid_relu, out_weights) + out_biases) 

  test_relu = tf.nn.relu( tf.matmul( tf_test_dataset, hidden_weights) + hidden_biases)
  test_prediction = tf.nn.softmax(tf.matmul(test_relu, out_weights) + out_biases)



#now is the actual training on the ANN we built
#we will run it for some number of steps and evaluate the progress after 
#every 500 steps

#number of steps we will train our ANN
num_steps = 3001

#actual training
with tf.Session(graph=graph) as session:
  tf.initialize_all_variables().run()
  print("Initialized")
  for step in range(num_steps):
    # Pick an offset within the training data, which has been randomized.
    # Note: we could use better randomization across epochs.
    offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
    # Generate a minibatch.
    batch_data = train_dataset[offset:(offset + batch_size), :]
    batch_labels = train_labels[offset:(offset + batch_size), :]
    # Prepare a dictionary telling the session where to feed the minibatch.
    # The key of the dictionary is the placeholder node of the graph to be fed,
    # and the value is the numpy array to feed to it.
    feed_dict = tf_train_dataset : batch_data, tf_train_labels : batch_labels
    _, l, predictions = session.run(
      [optimizer, loss, train_prediction], feed_dict=feed_dict)
    if (step % 500 == 0):
      print("Minibatch loss at step %d: %f" % (step, l))
      print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
      print("Validation accuracy: %.1f%%" % accuracy(
        valid_prediction.eval(), valid_labels))
      print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))

【讨论】:

如何获取数据集以尝试运行您的示例?即`'/home/maxkhk/Documents/Udacity/DeepLearningCourse/SourceCode/tensorflow/examples/udacity/notMNIST.pickle' ` @Pinocchio 这是 Udacity 的深度学习课程,它是在第一次作业中完成的,你可以在这里查看我的代码:github.com/MaxKHK/Udacity_DeepLearningAssignments/blob/master/… 训练期间好像没有更新batch_norm层的移动平均值【参考方案7】:

您可以简单地使用内置的 batch_norm 层:

batch_norm = tf.cond(is_train, 
    lambda: tf.contrib.layers.batch_norm(prev, activation_fn=tf.nn.relu, is_training=True, reuse=None),
    lambda: tf.contrib.layers.batch_norm(prev, activation_fn =tf.nn.relu, is_training=False, reuse=True))

prev 是前一层的输出(可以是全连接层或卷积层),is_train 是布尔占位符。只需使用 batch_norm 作为下一层的输入即可。

【讨论】:

您有没有将is_train 作为占位符传递的示例?我不能这样做,传递 python 布尔值不适用于 tf.cond 并在 if 分支中定义两个批处理规范给我“reuse=True 不能在没有 name_or_scope 的情况下使用”(即使我为它们指定了变量范围) ... @sygi,可以使用tf.cast(True/False, tf.bool)操作。 @sygi,是的,我知道,例如,您可以说:var1 = True or False,然后说:tf.cast(var1, tf.bool)。这应该可以正常工作 为什么将reuse=True设置在并且仅在测试阶段?【参考方案8】:

从 TensorFlow 1.0(2017 年 2 月)开始,TensorFlow 本身还包含高级 tf.layers.batch_normalization API。

使用起来超级简单:

# Set this to True for training and False for testing
training = tf.placeholder(tf.bool)

x = tf.layers.dense(input_x, units=100)
x = tf.layers.batch_normalization(x, training=training)
x = tf.nn.relu(x)

...除了它向图中添加了额外的操作(用于更新其均值和方差变量),它们不会成为您的训练操作的依赖项。您可以单独运行操作:

extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
sess.run([train_op, extra_update_ops], ...)

或手动添加更新操作作为训练操作的依赖项,然后正常运行训练操作:

extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(extra_update_ops):
    train_op = optimizer.minimize(loss)
...
sess.run([train_op], ...)

【讨论】:

@MiniQuark 你能详细说明依赖关系吗?我不太明白那部分。 @mamafoku Batch Norm 算法需要计算整个训练集的均值和标准差。这些在训练期间计算,但在训练期间不使用,仅在推理期间。该计算是使用指数平均值完成的。它独立于训练的其余部分,因此您必须在每次训练迭代中“手动”运行指数平均计算步骤(即extra_update_ops)以及常规训练操作,或者您可以使训练操作依赖于@ 987654327@(使用control_dependencies() 块)。希望这会有所帮助。 所以考虑到update_ups 的目的是更新移动均值和移动方差,如果我们只是测试一个预训练的网络,那么包含它是没有意义的,是否正确? 在卷积网络中应该使用axis 的什么值? @gantzer89 没错。如果加载预训练网络,检查点将包括训练期间计算的均值和方差值。测试期间不应更新均值和方差。

以上是关于如何在 TensorFlow 中使用批量标准化?的主要内容,如果未能解决你的问题,请参考以下文章

python 批量标准化,然后在tensorflow中激活ReLU。

批量标准化和辍学的顺序?

Tensorflow 批量标准化:tf.contrib.layers.batch_norm

python MNIST使用批量标准化 - TensorFlow教程

Tensorflow 批量标准化

Tensorflow 中的正确批量归一化功能是啥?