在 matplotlib 中更改日期时间轴的格式
Posted
技术标签:
【中文标题】在 matplotlib 中更改日期时间轴的格式【英文标题】:Changing the formatting of a datetime axis in matplotlib 【发布时间】:2017-10-13 14:50:31 【问题描述】:我有一个索引为datetime
的系列,我想绘制它。我想在 y 轴上绘制系列的值,在 x 轴上绘制系列的索引。 Series
如下所示:
2014-01-01 7
2014-02-01 8
2014-03-01 9
2014-04-01 8
...
我使用plt.plot(series.index, series.values)
生成图表。但是图表看起来像:
问题是我只想有年份和月份(yyyy-mm 或 2016 年 3 月)。但是,该图包含小时、分钟和秒。如何删除它们以获得所需的格式?
【问题讨论】:
【参考方案1】:你可以试试这样的:
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
df = pd.DataFrame('values':np.random.randint(0,1000,36),index=pd.date_range(start='2014-01-01',end='2016-12-31',freq='M'))
fig,ax1 = plt.subplots()
plt.plot(df.index,df.values)
monthyearFmt = mdates.DateFormatter('%Y %B')
ax1.xaxis.set_major_formatter(monthyearFmt)
_ = plt.xticks(rotation=90)
【讨论】:
【参考方案2】:import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
# sample data
N = 30
drange = pd.date_range("2014-01", periods=N, freq="MS")
np.random.seed(365) # for a reproducible example of values
values = 'values':np.random.randint(1,20,size=N)
df = pd.DataFrame(values, index=drange)
fig, ax = plt.subplots()
ax.plot(df.index, df.values)
ax.set_xticks(df.index)
# use formatters to specify major and minor ticks
ax.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m"))
ax.xaxis.set_minor_formatter(mdates.DateFormatter("%Y-%m"))
_ = plt.xticks(rotation=90)
【讨论】:
【参考方案3】:你应该看看这个 matplotlib 的原生函数:
fig.autofmt_xdate()
查看源网站Custom tick formatter上的示例
【讨论】:
以上是关于在 matplotlib 中更改日期时间轴的格式的主要内容,如果未能解决你的问题,请参考以下文章
如何使用 matplotlib 更改 y 轴的比例? [复制]
如何使用 matplotlib 在日期时间轴上绘制一个矩形?