将 pandas 数据框 json 列切成列

Posted

技术标签:

【中文标题】将 pandas 数据框 json 列切成列【英文标题】:Slice pandas dataframe json column into columns 【发布时间】:2018-08-11 09:00:03 【问题描述】:

我有一个数据框,它有两列 JSON 格式,如下所示:

   author          biblio                                 series                             
Mehrdad Vahabi    'volume': 68, 'month': 'January',      'handle':'RePEc:aka:aoecon', 'name': 'Oeconomica'
                   'name': 'János Kornai', 
                   'issue': 's', 'handle': 
                   'n:v:68:y:2018:i', 
                   'year': '2018', 
                   'pages': '27-52', 'doi': ''
Michael Bailey     'c_date': '2017', 'number':           'handle': '', 'name': ''
                    '23608', 'handle': 'RePEc:nbr:
                    nberwo:23608', 'name': 'Measuring'

我想要我的数据框看起来像这样:

author          biblio.volume  biblio.month    biblio.name  biblio.issue  biblio.handle    bibilio.year   biblio.pages   biblio.doi  biblio.c_date    bibi¡lio.number    series.handle   series.name
Mehrdad Vahabi  68             January         János Kornai s             n:v:68:y:2018:i  2018           27-52                      NA               NA                RePEc:aka:aoecon  Oeconomica
Michael Bailey  NA             Na              Meausuring   NA            nberwo:23608     NA             NA             NA          2017        23608

我尝试使用this 问题中的答案,但没有人适合我。

我该怎么做?

[编辑] Here is a sample of the data

[编辑]

按照@jezrael 解决方案,我得到了这个:

df1 = pd.DataFrame(df['biblio'].values.tolist())
df1.columns = 'biblio.'+ df1.columns

df2 = pd.DataFrame(df['series'].values.tolist())
df2.columns = 'series.'+ df2.columns

col = df.columns.difference(['biblio','series'])
df = pd.concat([df[col], df1, df2],axis=1)
print (df)


Traceback (most recent call last):
  File "dfs.py", line 8, in <module>
    df1.columns = 'bibliographic.'+ df1.columns
  File "/Users/danielotero/anaconda3/lib/python3.6/site-
packages/pandas/core/indexes/range.py", line 583, in _evaluate_numeric_binop
    other = self._validate_for_numeric_binop(other, op, opstr)
  File "/Users/danielotero/anaconda3/lib/python3.6/site-
packages/pandas/core/indexes/base.py", line 3961, in 
_validate_for_numeric_binop
     raise TypeError("can only perform ops with scalar values")
TypeError: can only perform ops with scalar values

还有json_normalize:

Traceback (most recent call last):
  File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/core/indexes/base.py", line 2525, in get_loc
    return self._engine.get_loc(key)
  File "pandas/_libs/index.pyx", line 117, in pandas._libs.index.IndexEngine.get_loc
  File "pandas/_libs/index.pyx", line 139, in pandas._libs.index.IndexEngine.get_loc
  File "pandas/_libs/hashtable_class_helper.pxi", line 1265, in pandas._libs.hashtable.PyObjectHashTable.get_item
  File "pandas/_libs/hashtable_class_helper.pxi", line 1273, in pandas._libs.hashtable.PyObjectHashTable.get_item
KeyError: 0

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "dfs.py", line 7, in <module>
    df = json_normalize(d)
  File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 192, in json_normalize
    if any([isinstance(x, dict) for x in compat.itervalues(data[0])]):
  File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py", line 2139, in __getitem__
    return self._getitem_column(key)
  File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py", line 2146, in _getitem_column
    return self._get_item_cache(key)
  File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/core/generic.py", line 1842, in _get_item_cache
    values = self._data.get(item)
  File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/core/internals.py", line 3843, in get
    loc = self.items.get_loc(item)
  File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/core/indexes/base.py", line 2527, in get_loc
    return self._engine.get_loc(self._maybe_cast_indexer(key))
  File "pandas/_libs/index.pyx", line 117, in pandas._libs.index.IndexEngine.get_loc
  File "pandas/_libs/index.pyx", line 139, in pandas._libs.index.IndexEngine.get_loc
  File "pandas/_libs/hashtable_class_helper.pxi", line 1265, in pandas._libs.hashtable.PyObjectHashTable.get_item
  File "pandas/_libs/hashtable_class_helper.pxi", line 1273, in pandas._libs.hashtable.PyObjectHashTable.get_item
KeyError: 0

按照@Jhon H 解决方案,我得到了这个:

Traceback (most recent call last):
  File "dfs.py", line 7, in <module>
    jsonSeries = df[['bibliographic']].tolist()
  File "/Users/danielotero/anaconda3/lib/python3.6/site-packages/pandas/core/generic.py", line 3614, in __getattr__
    return object.__getattribute__(self, name)
AttributeError: 'DataFrame' object has no attribute 'tolist'

【问题讨论】:

jsonDataFrame 的输入吗?也许可以在没有dict列的情况下从json创建df 【参考方案1】:

由构造函数为每个dict 列new DataFrame 和最后一个concat 一起创建:

df1 = pd.DataFrame(df['biblio'].values.tolist())
df1.columns = 'biblio.'+ df1.columns

df2 = pd.DataFrame(df['series'].values.tolist())
df2.columns = 'series.'+ df2.columns

col = df.columns.difference(['biblio','series'])
df = pd.concat([df[col], df1, df2],axis=1)
print (df)
           author biblio.c_date biblio.doi           biblio.handle  \
0  Mehrdad Vahabi           NaN                    n:v:68:y:2018:i   
1  Michael Bailey          2017        NaN  RePEc:nbr:nberwo:23608   

  biblio.issue biblio.month   biblio.name biblio.number biblio.pages  \
0            s      January  Janos Kornai           NaN        27-52   
1          NaN          NaN     Measuring         23608          NaN   

   biblio.volume biblio.year     series.handle series.name  
0           68.0        2018  RePEc:aka:aoecon  Oeconomica  
1            NaN         NaN                           

编辑:

如果输入是json,可以使用json_normalize

from pandas.io.json import json_normalize

d = ["author":"Mehrdad Vahabi","biblio":"volume":68,"month":"January","name":"Janos Kornai","issue":"s","handle":"n:v:68:y:2018:i","year":"2018","pages":"27-52","doi":"","series":"handle":"RePEc:aka:aoecon","name":"Oeconomica","author":"Michael Bailey","biblio":"c_date":"2017","number":"23608","handle":"RePEc:nbr:nberwo:23608","name":"Measuring","series":"handle":"","name":""]

df = json_normalize(d)
print (df)
           author biblio.c_date biblio.doi           biblio.handle  \
0  Mehrdad Vahabi           NaN                    n:v:68:y:2018:i   
1  Michael Bailey          2017        NaN  RePEc:nbr:nberwo:23608   

  biblio.issue biblio.month   biblio.name biblio.number biblio.pages  \
0            s      January  Janos Kornai           NaN        27-52   
1          NaN          NaN     Measuring         23608          NaN   

   biblio.volume biblio.year     series.handle series.name  
0           68.0        2018  RePEc:aka:aoecon  Oeconomica  
1            NaN         NaN                                

编辑:您的字典是字符串存在问题,因此首先必须使用ast.literal_eval 进行转换:

import ast

df = pd.read_csv('probe.csv')
#print (df)

df1 = pd.DataFrame(df['bibliographic'].apply(ast.literal_eval).values.tolist())
df1.columns = 'bibliographic.'+ df1.columns

df2 = pd.DataFrame(df['series'].apply(ast.literal_eval).values.tolist())
df2.columns = 'series.'+ df2.columns

col = df.columns.difference(['bibliographic','series'])
df = pd.concat([df[col], df1, df2],axis=1)

【讨论】:

我正在编辑和更新问题,其中包含您的解决方案给我的错误。 我已经用 Dropbox 中的数据样本更新了问题。 df1.columns = 'bibliographic.'+ df1.columns.astype(str) and df2.columns = 'series.'+ df2.columns.astype(str) 仅更改bibliographicseries 位置。【参考方案2】:

您需要单独处理列并将它们全部连接在一起以获得您需要的格式。这是一个您可以遵循的简单示例

import pandas as pd
records = ['col1':'v1','col2':'a1':1,'b1':1,'col3':'c1':1,'d1':1,
           'col1':'v2','col2':'a1':2,'b1':2,'col3':'c1':2,'d1':2]
sample_df = pd.DataFrame(records)
sample_df


    col1      col2                col3
0   v1  'a1': 1, 'b1': 1  'c1': 1, 'd1': 1
1   v2  'a1': 2, 'b1': 2  'c1': 2, 'd1': 2


col2_expanded = sample_df.col2.apply(lambda x:pd.Series(x))
col2_expanded.columns = ['.'.format('col2',i) for i in col2_expanded]
col2_expanded


    col2.a1     col2.b1
0   1             1
1   2             2

col3_expanded = sample_df.col3.apply(lambda x:pd.Series(x))
col3_expanded.columns = ['.'.format('col3',i) for i in col3_expanded]
col3_expanded


    col3.c1     col3.d1
0   1            1
1   2            2

final = pd.concat([sample_df[['col1']],col2_expanded,col3_expanded],axis=1)
final

    col1    col2.a1     col2.b1     col3.c1     col3.d1
0   v1       1           1            1         1
1   v2       2           2            2         2

【讨论】:

以上是关于将 pandas 数据框 json 列切成列的主要内容,如果未能解决你的问题,请参考以下文章

将包含 json 数据的 pandas 数据框的列拆分为多列

如何根据条件将数据框中的一列切成多个系列

在 Pandas 数据框中使用 JSON 数据规范化列

将json行数据划分为pandas数据框的多列[重复]

从 json 创建的 Pandas 数据框有未命名的列 - 由于未命名的列问题,无法插入 MySQL

从 pandas 数据框创建单个列