探索未探索节点的问题 Astar - Python
Posted
技术标签:
【中文标题】探索未探索节点的问题 Astar - Python【英文标题】:Problem with exploring unexplored nodes Astar - Python 【发布时间】:2020-08-05 19:52:17 【问题描述】:我对 python 有点陌生,我正在尝试实现一个 astar 搜索算法,但在回溯我的搜索和探索未探索的节点时我遇到了问题。回溯只对我有用一次,我不知道为什么它不继续探索未探索的节点。
到目前为止的算法: 节点(邻居): : 1 (2,12,1363) -> 2 (1,13,48) -> 13 (2) : 2 (1,13,48) -> 48 (2)
所以算法从不查看节点 1 的其他邻居,但它确实寻找节点 2 的其他邻居,我不知道为什么。我将不胜感激任何帮助!提前致谢!
功能是我的问题似乎发生了:
def distance(startnode, endnode, graphone):
"""computes the distance between two vertices"""
startNeighbors = startnode.getNeighbors(graphone)
startWeights = startnode.getWeights()
startWeights.sort()
index = startWeights.index(min(startWeights))
dist.add(startWeights[index])
endIndex = endnode.index
path.add(startnode.index)
startNeighborsIndex = []
for number in startNeighbors:
startNeighborsIndex.append(number.index)
if endIndex in startNeighborsIndex:
return path.add(endnode.index)
elif startNeighborsIndex[index] in path and len(startNeighborsIndex) > 1: #Backtrack
i = 0
for item in startNeighborsIndex:
if item not in path:
return distance(graphone.getVertex(startNeighborsIndex[i]),endnode,graphone)
i = i + 1
# if index + 1 < len(startNeighbors)-1:
# return distance(graph.getVertex(startNeighbors[index+1]),n2,graph)
# elif index + 1 == len(startNeighbors):
# return distance(graph.getVertex(startNeighbors[index]),n2,graph)
# elif index + 1 > len(startNeighbors)-1:
# return distance(graph.getVertex(startNeighbors[index-1]),n2,graph)
# else:
# return distance(graph.getVertex(startNeighbors[len(startNeighbors)-1]),n2,graph)
else:
return distance(graphone.getVertex(startNeighborsIndex[index]),endnode,graphone)
完整代码:
from abc import ABCMeta, abstractmethod
from heapq import heappush, heappop, heapify
import fileinput
import math
Infinite = float('inf')
dist = set()
path = set()
def __main__():
graphone = readGraph('data/USA-road-d.NY.gr')
co = readCoordinates('data/USA-road-d.NY.co')
startNode = graphone.getVertex(1)
endNode = graphone.getVertex(3)
costFunc = distance(startNode,endNode,graphone)
# find_path(startNode,endNode,neighbors_fnct=startNode.neighbors(graphone),heuristic_cost_estimate_fnct=distance(startNode,endNode,graphone),distance_between_fnct=distance(startNode,endNode,graphone))
find_path(startNode,endNode,neighbors_fnct=startNode.neighbors(graphone),heuristic_cost_estimate_fnct=distance(graphone),distance_between_fnct=distance(graphone))
def readGraph(filePath):
n_vertices = 0
for line in fileinput.input([filePath]):
words = line.split(" ")
if (words[0] == "p"):
n_vertices = int(words[2])
graph = Graph(n_vertices)
for line in fileinput.input([filePath]):
words = line.split(" ")
if (words[0] == "a"):
graph._addVertex(int(words[1]), int(words[2]), float(words[3]))
return graph
# read coordinates data
def readCoordinates(filepath):
# Start to count from 1
coordinates = [None]
for line in fileinput.input([filepath]):
words = line.split(" ")
if (words[0] == "v"):
coordinates.append([float(words[2]), float(words[3])])
return coordinates
class Vertex:
# Initialization of a vertex, given a neighbor and the corresponding weight
# Each vertex contains a list of neighbors and corresponding weights
def __init__(self, i, neighbor_index, weight):
self.index = i
self.neighbors = [neighbor_index]
self.weights = [weight]
def getNeighbors(self,graphone):
neighborList = self.neighbors
neighbors = []
for number in neighborList:
neighbors.append(graphone.getVertex(number))
return neighbors
def getWeights(self):
return self.weights
# Add a neighbor with corresponding weight to the vertex
def _addNeighbor(self, neighbor_index, weight):
self.neighbors.append(neighbor_index)
self.weights.append(weight)
# Graph data structure
class Graph:
# Initializes a graph with n_vertices nodes
# The graph contains a list of vertices
def __init__(self, n_vertices):
self.vertices = [None] * (n_vertices+1)
self.num_vertices = n_vertices
# Returns the i'th node
def getVertex(self, i): #Recursion error, maximum depth reached
if ((i > self.num_vertices) | (i <= 0)):
raise ValueError(f'index i is out of bounds')
else:
return self.vertices[i]
# Adds a new vertex to the graph
def _addVertex(self, vertex_index, neighor_index, distance):
if (self.vertices[vertex_index] == None):
# Construct new vertex
self.vertices[vertex_index] = Vertex(vertex_index, neighor_index, distance)
else:
# Vertex already in graph but other neighbor, add extra edge
self.vertices[vertex_index]._addNeighbor(neighor_index, distance)
def getTrueDistance(self,startNode, endNode):
startIndex = startNode.index
endIndex = endNode.index
def distance(startnode, endnode, graphone):
"""computes the distance between two vertices"""
startNeighbors = startnode.getNeighbors(graphone)
startWeights = startnode.getWeights()
startWeights.sort()
index = startWeights.index(min(startWeights))
dist.add(startWeights[index])
endIndex = endnode.index
path.add(startnode.index)
startNeighborsIndex = []
for number in startNeighbors:
startNeighborsIndex.append(number.index)
if endIndex in startNeighborsIndex:
return path.add(endnode.index)
elif startNeighborsIndex[index] in path and len(startNeighborsIndex) > 1: #Backtrack
i = 0
for item in startNeighborsIndex:
if item not in path:
return distance(graphone.getVertex(startNeighborsIndex[i]),endnode,graphone)
i = i + 1
# if index + 1 < len(startNeighbors)-1:
# return distance(graph.getVertex(startNeighbors[index+1]),n2,graph)
# elif index + 1 == len(startNeighbors):
# return distance(graph.getVertex(startNeighbors[index]),n2,graph)
# elif index + 1 > len(startNeighbors)-1:
# return distance(graph.getVertex(startNeighbors[index-1]),n2,graph)
# else:
# return distance(graph.getVertex(startNeighbors[len(startNeighbors)-1]),n2,graph)
else:
return distance(graphone.getVertex(startNeighborsIndex[index]),endnode,graphone)
class AStar:
__metaclass__ = ABCMeta
__slots__ = ()
class SearchNode:
__slots__ = ('data', 'gscore', 'fscore',
'closed', 'came_from', 'out_openset')
def __init__(self, data, gscore=Infinite, fscore=Infinite):
self.data = data
self.gscore = gscore
self.fscore = fscore
self.closed = False
self.out_openset = True
self.came_from = None
def __lt__(self, b):
return self.fscore < b.fscore
class SearchNodeDict(dict):
def __missing__(self, k):
v = AStar.SearchNode(k)
self.__setitem__(k, v)
return v
@abstractmethod
def heuristic_cost_estimate(self, current, goal):
"""Computes the estimated (rough) distance between a node and the goal, this method must be implemented in a subclass. The second parameter is always the goal."""
raise NotImplementedError
@abstractmethod
def distance_between(self, n1, n2):
"""Gives the real distance between two adjacent nodes n1 and n2 (i.e n2 belongs to the list of n1's neighbors).
n2 is guaranteed to belong to the list returned by the call to neighbors(n1).
This method must be implemented in a subclass."""
raise NotImplementedError
@abstractmethod
def neighbors(self, current):
"""For a given node, returns (or yields) the list of its neighbors. this method must be implemented in a subclass"""
vertex = Vertex(node)
raise NotImplementedError
def is_goal_reached(self, current, goal):
""" returns true when we can consider that 'current' is the goal"""
return current == goal
def reconstruct_path(self, last, reversePath=False):
def _gen():
current = last
while current:
yield current.data
current = current.came_from
if reversePath:
return _gen()
else:
return reversed(list(_gen()))
def astar(self, start, goal, reversePath=False):
# def astar(start,goal,reversePath=False):
if self.is_goal_reached(start, goal):
return [start]
searchNodes = AStar.SearchNodeDict()
startNode = searchNodes[start] = AStar.SearchNode(
start, gscore=.0, fscore=self.heuristic_cost_estimate(start,goal))
openSet = []
heappush(openSet, startNode)
while openSet:
current = heappop(openSet)
if self.is_goal_reached(current.data, goal):
return self.reconstruct_path(current, reversePath)
current.out_openset = True
current.closed = True
#for neighbor in map(lambda n: searchNodes[n], self.neighbors[current.data]):
for neighbor in map(lambda n: searchNodes[n], self.neighbors(current.data)):
if neighbor.closed:
continue
tentative_gscore = current.gscore + \
self.distance_between(current.data, neighbor.data)
if tentative_gscore >= neighbor.gscore:
continue
neighbor.came_from = current
neighbor.gscore = tentative_gscore
neighbor.fscore = tentative_gscore + \
self.heuristic_cost_estimate(neighbor.data, goal)
if neighbor.out_openset:
neighbor.out_openset = False
heappush(openSet, neighbor)
else:
heapify(openSet)
#return self
return None
def find_path(start, goal, neighbors_fnct, reversePath=False, heuristic_cost_estimate_fnct=lambda a, b: Infinite, distance_between_fnct=lambda a, b: 1.0, is_goal_reached_fnct=lambda a, b: a == b):
"""A non-class version of the path finding algorithm"""
class FindPath(AStar):
def heuristic_cost_estimate(self, current, goal):
return heuristic_cost_estimate_fnct(current, goal)
def distance_between(self, n1, n2):
return distance_between_fnct(n1, n2)
def neighbors(self, node):
return neighbors_fnct(node)
def is_goal_reached(self, current, goal):
return is_goal_reached_fnct(current, goal)
return FindPath().astar(start, goal, reversePath)
if __name__ == '__main__':
__main__()
【问题讨论】:
【参考方案1】:我不知道 python,但在 A* 算法中,一种回溯方法是每当您将节点添加到打开列表时,将其“父节点”设置为当前节点。因此,当您将节点添加到打开列表时,请将其父节点设置为当前节点,即添加它的节点。然后,当您将节点添加到打开列表并且打开列表中已经存在一个节点时,将其父节点替换为当前节点。
如果您还没有观看此视频,您应该观看: https://www.youtube.com/watch?v=-L-WgKMFuhE&t=445s
【讨论】:
以上是关于探索未探索节点的问题 Astar - Python的主要内容,如果未能解决你的问题,请参考以下文章