无法保存变压器模型

Posted

技术标签:

【中文标题】无法保存变压器模型【英文标题】:Transformer model not able to be saved 【发布时间】:2020-05-04 20:55:57 【问题描述】:

我正在尝试遵循这个教程https://colab.research.google.com/github/tensorflow/examples/blob/master/community/en/transformer_chatbot.ipynb,但是,当我尝试保存模型以便在没有训练的情况下再次加载它时,我收到了这里提到的错误NotImplementedError: Layers with arguments in `__init__` must override `get_config` 我从答案中了解到,我需要将编码器和解码器制作为类并对其进行自定义(而不是将其保留为 colab tutrial 之类的函数),因此我在此处返回此模型的张量流文档:https://www.tensorflow.org/tutorials/text/transformer#encoder_layer 并尝试在里面编辑。我将编码器层设为:

class EncoderLayer(tf.keras.layers.Layer):
  def __init__(self, d_model, num_heads,  rate=0.1,**kwargs,):
    #super(EncoderLayer, self).__init__()
    super().__init__(**kwargs)
    self.mha = MultiHeadAttention(d_model, num_heads)
    self.ffn = point_wise_feed_forward_network(d_model, dff)

    self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
    self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)

    self.dropout1 = tf.keras.layers.Dropout(rate)
    self.dropout2 = tf.keras.layers.Dropout(rate)
  def get_config(self):

        config = super().get_config().copy()
        config.update(
            #'vocab_size': self.vocab_size,
            #'num_layers': self.num_layers,
            #'units': self.units,
            'd_model': self.d_model,
            'num_heads': self.num_heads,
            'dropout': self.dropout,
        )
        return config

  def call(self, x, training, mask):

    attn_output, _ = self.mha(x, x, x, mask)  # (batch_size, input_seq_len, d_model)
    attn_output = self.dropout1(attn_output, training=training)
    out1 = self.layernorm1(x + attn_output)  # (batch_size, input_seq_len, d_model)

    ffn_output = self.ffn(out1)  # (batch_size, input_seq_len, d_model)
    ffn_output = self.dropout2(ffn_output, training=training)
    out2 = self.layernorm2(out1 + ffn_output)  # (batch_size, input_seq_len, d_model)

    return out2

对于解码器层类也是如此。然后是tf的文档中的同一个编码器

class Encoder(tf.keras.layers.Layer):
  def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,
               maximum_position_encoding, rate=0.1):
    super(Encoder, self).__init__()

    self.d_model = d_model
    self.num_layers = num_layers

    self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model)
    self.pos_encoding = positional_encoding(maximum_position_encoding, 
                                            self.d_model)


    self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) 
                       for _ in range(num_layers)]

    self.dropout = tf.keras.layers.Dropout(rate)

  def call(self, x, training, mask):

    seq_len = tf.shape(x)[1]

    # adding embedding and position encoding.
    x = self.embedding(x)  # (batch_size, input_seq_len, d_model)
    x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
    x += self.pos_encoding[:, :seq_len, :]

    x = self.dropout(x, training=training)

    for i in range(self.num_layers):
      x = self.enc_layers[i](x, training, mask)

    return x  # (batch_size, input_seq_len, d_model)

模型的功能为:

def transformer(vocab_size,
                num_layers,
                units,
                d_model,
                num_heads,
                dropout,
                name="transformer"):
  inputs = tf.keras.Input(shape=(None,), name="inputs")
  dec_inputs = tf.keras.Input(shape=(None,), name="dec_inputs")

  enc_padding_mask = tf.keras.layers.Lambda(
      create_padding_mask, output_shape=(1, 1, None),
      name='enc_padding_mask')(inputs)
  # mask the future tokens for decoder inputs at the 1st attention block
  look_ahead_mask = tf.keras.layers.Lambda(
      create_look_ahead_mask,
      output_shape=(1, None, None),
      name='look_ahead_mask')(dec_inputs)
  # mask the encoder outputs for the 2nd attention block
  dec_padding_mask = tf.keras.layers.Lambda(
      create_padding_mask, output_shape=(1, 1, None),
      name='dec_padding_mask')(inputs)

  enc_outputs = Encoder(
      num_layers=num_layers, d_model=d_model, num_heads=num_heads, 
                         input_vocab_size=vocab_size,


  )(inputs=[inputs, enc_padding_mask])

  dec_outputs = Decoder(
      num_layers=num_layers, d_model=d_model, num_heads=num_heads, 
                          target_vocab_size=vocab_size,


  )(inputs=[dec_inputs, enc_outputs, look_ahead_mask, dec_padding_mask])

  outputs = tf.keras.layers.Dense(units=vocab_size, name="outputs")(dec_outputs)

  return tf.keras.Model(inputs=[inputs, dec_inputs], outputs=outputs, name=name)

并调用模型:

#the model itself with its paramters:
# Hyper-parameters
NUM_LAYERS = 3
D_MODEL = 256
#D_MODEL=tf.cast(D_MODEL, tf.float32)

NUM_HEADS = 8
UNITS = 512
DROPOUT = 0.1
model = transformer(
    vocab_size=VOCAB_SIZE,
    num_layers=NUM_LAYERS,
    units=UNITS,
    d_model=D_MODEL,
    num_heads=NUM_HEADS,
    dropout=DROPOUT)

但是,我得到了那个错误: TypeError: __init__() missing 2 required positional arguments: 'dff' and 'maximum_position_encoding' 我真的很困惑,我不明白文档中的 dff 和最大位置编码是什么意思,当我从编码器和解码器类中删除它们时,我得到了另一个错误,因为 positional_encoding 函数将最大位置作为输入并且 dff 被传递为类内输入。我不太确定我应该做什么,因为我不确定我是否遵循正确的步骤

【问题讨论】:

您的get_config 定义错误。下面的答案指出了其中许多。 【参考方案1】:

如果您在调用 transformer 时遇到此错误,那么您的问题在于创建模型,而不是保存它。

除此之外,我发现您的get_config 存在一些问题:

    您定义了dropout 而不是rate。 您处理的属性(self.d_model 等)未在 __init__ 定义或分配。 Encoder 类不存在。

【讨论】:

那么您找到解决方案了吗?我有同样的错误,但是在我导入 get_config 函数之后..我得到了 Not JSON Serializable..error.!我在一些论坛上读到,无法保存你的神经网络,如果它有自定义层,你只需要保存权重......? 请发布一个包含更多信息的新问题,我会尽力提供帮助。

以上是关于无法保存变压器模型的主要内容,如果未能解决你的问题,请参考以下文章

无法在 mleap 中序列化 apache spark 变压器

使用拥抱面变压器只保存最佳重量

使变压器BertForSequenceClassification初始层无法进行火炬训练

带有变压器的分类模型的 keras 模型中的错误

Pyspark:保存变压器

预训练变压器模型的配置更改