在字符串中搜索未知模式的最有效方法?

Posted

技术标签:

【中文标题】在字符串中搜索未知模式的最有效方法?【英文标题】:Most efficient way to search for unknown patterns in a string? 【发布时间】:2017-10-22 15:59:04 【问题描述】:

我正在尝试寻找以下模式:

不止一次发生 长度超过 1 个字符 不是任何其他已知模式的子字符串

不知道可能发生的任何模式。

例如:

字符串“the boy fall by the bell”将返回 'ell', 'the b', 'y '。 字符串“男孩倒在铃旁,男孩倒在铃旁”将返回'the boy fell by the bell'

使用双 for 循环,它可能会被暴力强制非常效率低下:

ArrayList<String> patternsList = new ArrayList<>();
int length = string.length();
for (int i = 0; i < length; i++) 
    int limit = (length - i) / 2;
    for (int j = limit; j >= 1; j--) 
        int candidateEndIndex = i + j;
        String candidate = string.substring(i, candidateEndIndex);

        if(candidate.length() <= 1) 
            continue;
        

        if (string.substring(candidateEndIndex).contains(candidate)) 
            boolean notASubpattern = true;
            for (String pattern : patternsList) 
                if (pattern.contains(candidate)) 
                    notASubpattern = false;
                    break;
                
            

            if (notASubpattern) 
                patternsList.add(candidate);
            
        
    

但是,在搜索包含大量模式的大字符串时,这非常慢。

【问题讨论】:

某种意义上,这是一种压缩形式。您可能会对各种压缩算法进行一些研究。 为什么在您的第一个结果示例中单个空格不是元素? @Björn 因为它只有一个字符长。 当然/me 擦眼镜 为什么“,”是一个带空格的逗号,不是您的第二个结果示例的一部分? 【参考方案1】:

您可以在线性时间内为您的字符串构建后缀树: https://en.wikipedia.org/wiki/Suffix_tree

您要查找的模式是与只有叶子节点的内部节点相对应的字符串。

【讨论】:

【参考方案2】:

您可以使用 n-gram 来查找字符串中的模式。扫描字符串中的 n-gram 需要 O(n) 时间。当您使用 n-gram 找到子字符串时,将其放入哈希表中,并计算在字符串中找到该子字符串的次数。在字符串中搜索完 n-gram 后,在哈希表中搜索大于 1 的计数以查找字符串中的重复模式。

例如,在字符串“男孩倒在铃旁,男孩倒在铃旁”中,使用 6 克将找到子字符串“男孩倒在铃旁”。具有该子字符串的哈希表条目的计数为 2,因为它在字符串中出现了两次。改变 n-gram 中的单词数量将帮助您发现字符串中的不同模式。

Dictionary<string, int>dict = new Dictionary<string, int>();
int count = 0;
int ngramcount = 6;
string substring = "";

// Add entries to the hash table
while (count < str.length) 
    // copy the words into the substring
    int i = 0;
    substring = "";
    while (ngramcount > 0 && count < str.length) 
        substring[i] = str[count];
        if (str[i] == ' ')
            ngramcount--;
        i++;
        count++;
    
    ngramcount = 6;
    substring.Trim();  // get rid of the last blank in the substring
    // Update the dictionary (hash table) with the substring
    if (dict.Contains(substring))   // substring is already in hash table so increment the count
        int hashCount = dict[substring];
        hashCount++;
        dict[substring] = hashCount;
    
    else
        dict[substring] = 1;


// Find the most commonly occurrring pattern in the string
// by searching the hash table for the greatest count.
int maxCount = 0;
string mostCommonPattern = "";
foreach (KeyValuePair<string, int> pair in dict) 
    if (pair.Value > maxCount) 
        maxCount = pair.Value;
        mostCommonPattern = pair.Key;
    

【讨论】:

【参考方案3】:

我写这个只是为了好玩。我希望我已经正确理解了这个问题,这是有效且足够快的;如果没有,请对我放轻松:) 如果有人觉得它有用,我想我可能会再优化一点。

private static IEnumerable<string> getPatterns(string txt)

    char[] arr = txt.ToArray();
    BitArray ba = new BitArray(arr.Length);
    for (int shingle = getMaxShingleSize(arr); shingle >= 2; shingle--)
    
        char[] arr1 = new char[shingle];
        int[] indexes = new int[shingle];
        HashSet<int> hs = new HashSet<int>();
        Dictionary<int, int[]> dic = new Dictionary<int, int[]>();
        for (int i = 0, count = arr.Length - shingle; i <= count; i++)
        
            for (int j = 0; j < shingle; j++)
            
                int index = i + j;
                arr1[j] = arr[index];
                indexes[j] = index;
            
            int h = getHashCode(arr1);
            if (hs.Add(h))
            
                int[] indexes1 = new int[indexes.Length];
                Buffer.BlockCopy(indexes, 0, indexes1, 0, indexes.Length * sizeof(int));
                dic.Add(h, indexes1);
            
            else
            
                bool exists = false;
                foreach (int index in indexes)
                    if (ba.Get(index))
                    
                        exists = true;
                        break;
                    
                if (!exists)
                
                    int[] indexes1 = dic[h];
                    if (indexes1 != null)
                        foreach (int index in indexes1)
                            if (ba.Get(index))
                            
                                exists = true;
                                break;
                            
                
                if (!exists)
                
                    foreach (int index in indexes)
                        ba.Set(index, true);
                    int[] indexes1 = dic[h];
                    if (indexes1 != null)
                        foreach (int index in indexes1)
                            ba.Set(index, true);
                    dic[h] = null;
                    yield return new string(arr1);
                
            
        
    

private static int getMaxShingleSize(char[] arr)
            
    for (int shingle = 2; shingle <= arr.Length / 2 + 1; shingle++)
    
        char[] arr1 = new char[shingle];
        HashSet<int> hs = new HashSet<int>();
        bool noPattern = true;
        for (int i = 0, count = arr.Length - shingle; i <= count; i++)
        
            for (int j = 0; j < shingle; j++)
                arr1[j] = arr[i + j];
            int h = getHashCode(arr1);
            if (!hs.Add(h))
            
                noPattern = false;
                break;
            
        
        if (noPattern)
            return shingle - 1;
    
    return -1;

private static int getHashCode(char[] arr)

    unchecked
    
        int hash = (int)2166136261;
        foreach (char c in arr)
            hash = (hash * 16777619) ^ c.GetHashCode();
        return hash;
    

编辑 我以前的代码有严重的问题。这个更好:

private static IEnumerable<string> getPatterns(string txt)

    Dictionary<int, int> dicIndexSize = new Dictionary<int, int>();
    for (int shingle = 2, count0 = txt.Length / 2 + 1; shingle <= count0; shingle++)
       
        Dictionary<string, int> dic = new Dictionary<string, int>();
        bool patternExists = false;
        for (int i = 0, count = txt.Length - shingle; i <= count; i++)
        
            string sub = txt.Substring(i, shingle);
            if (!dic.ContainsKey(sub))
                dic.Add(sub, i);
            else
               
                patternExists = true;
                int index0 = dic[sub];
                if (index0 >= 0)
                
                    dicIndexSize[index0] = shingle;
                    dic[sub] = -1;
                
            
        
        if (!patternExists)
            break;
    
    List<int> lst = dicIndexSize.Keys.ToList();
    lst.Sort((a, b) => dicIndexSize[b].CompareTo(dicIndexSize[a]));
    BitArray ba = new BitArray(txt.Length);
    foreach (int i in lst)
    
        bool ok = true;
        int len = dicIndexSize[i];
        for (int j = i, max = i + len; j < max; j++)
        
            if (ok) ok = !ba.Get(j);
            ba.Set(j, true);
        
        if (ok)
            yield return txt.Substring(i, len);
    

this book 中的文本在我的计算机中花费了 3.4 秒。

【讨论】:

嗨@AlexQuilliam。我想知道你是否找到了一个好的解决方案。如果是这样,如果您能添加代码,那就太好了。我很好奇我的代码在最佳解决方案方面的性能和有效性。【参考方案4】:

后缀数组是正确的想法,但缺少一个重要的部分,即识别文献中称为“超最大重复”的内容。这是一个带有工作代码的 GitHub 存储库:https://github.com/eisenstatdavid/commonsub。后缀数组构造使用 SAIS 库,作为子模块出售。使用findsmaxr in Efficient repeat finding via suffix arrays (Becher–Deymonnaz–Heiber) 中的伪代码的更正版本找到超最大重复。

static void FindRepeatedStrings(void) 
  // findsmaxr from https://arxiv.org/pdf/1304.0528.pdf
  printf("[");
  bool needComma = false;
  int up = -1;
  for (int i = 1; i < Len; i++) 
    if (LongCommPre[i - 1] < LongCommPre[i]) 
      up = i;
      continue;
    
    if (LongCommPre[i - 1] == LongCommPre[i] || up < 0) continue;
    for (int k = up - 1; k < i; k++) 
      if (SufArr[k] == 0) continue;
      unsigned char c = Buf[SufArr[k] - 1];
      if (Set[c] == i) goto skip;
      Set[c] = i;
    
    if (needComma) 
      printf("\n,");
    
    printf("\"");
    for (int j = 0; j < LongCommPre[up]; j++) 
      unsigned char c = Buf[SufArr[up] + j];
      if (iscntrl(c)) 
        printf("\\u%.4x", c);
       else if (c == '\"' || c == '\\') 
        printf("\\%c", c);
       else 
        printf("%c", c);
      
    
    printf("\"");
    needComma = true;
  skip:
    up = -1;
  
  printf("\n]\n");

这是第一段文本的示例输出:

Davids-MBP:commonsub eisen$ ./repsub input
["\u000a"
," S"
," as "
," co"
," ide"
," in "
," li"
," n"
," p"
," the "
," us"
," ve"
," w"
,"\""
,"&ndash;"
,"("
,")"
,". "
,"0"
,"He"
,"Suffix array"
,"`"
,"a su"
,"at "
,"code"
,"com"
,"ct"
,"do"
,"e f"
,"ec"
,"ed "
,"ei"
,"ent"
,"ere's a "
,"find"
,"her"
,"https://"
,"ib"
,"ie"
,"ing "
,"ion "
,"is"
,"ith"
,"iv"
,"k"
,"mon"
,"na"
,"no"
,"nst"
,"ons"
,"or"
,"pdf"
,"ri"
,"s are "
,"se"
,"sing"
,"sub"
,"supermaximal repeats"
,"te"
,"ti"
,"tr"
,"ub "
,"uffix arrays"
,"via"
,"y, "
]

【讨论】:

【参考方案5】:

我会使用Knuth–Morris–Pratt algorithm(线性时间复杂度O(n))来查找子字符串。我会尝试找到最大的子字符串模式,将其从输入字符串中删除并尝试找到第二大的,依此类推。我会这样做:

string pattern = input.substring(0,lenght/2);
string toMatchString = input.substring(pattern.length, input.lenght - 1);

List<string> matches = new List<string>();

while(pattern.lenght > 0)

    int index = KMP(pattern, toMatchString);
    if(index > 0)
    
        matches.Add(pattern);

        // remove the matched pattern occurences from the input string
        // I would do something like this:
        // 0 to pattern.lenght gets removed
        // check for all occurences of pattern in toMatchString and remove them
        // get the remaing shrinked input, reassign values for pattern & toMatchString
        // keep looking for the next largest substring
    
    else
    
        pattern = input.substring(0, pattern.lenght - 1);
        toMatchString = input.substring(pattern.length, input.lenght - 1);
    

KMP 实现了 Knuth–Morris–Pratt 算法。您可以在 Github 或 Princeton 找到它的 Java 实现,或者自己编写。

PS:我不会用 Java 编写代码,我的第一个赏金很快就要结束了。所以如果我错过了一些琐碎的事情或犯了 +/-1 的错误,请不要给我棍子。

【讨论】:

以上是关于在字符串中搜索未知模式的最有效方法?的主要内容,如果未能解决你的问题,请参考以下文章

在巨大列表中查找/搜索的最有效方法(python)

实现语音搜索的最有效方法

在字符串数组中搜索子字符串的最有效方法

在 SQL Server 中检查逗号分隔字符串中是不是存在子字符串的最有效方法

从 .txt 文件中读取未知大小的整数二维数组的最有效方法是啥?

检查未知对象中的对象是不是存在的最有效的Javascript方法[重复]