使用 Matlab 的视觉函数重新建立新的特征点
Posted
技术标签:
【中文标题】使用 Matlab 的视觉函数重新建立新的特征点【英文标题】:Re-establishing new feature points using Matlab's vision functions 【发布时间】:2014-12-09 05:04:35 【问题描述】:我正在使用 Matlab 的内置视觉函数和预制示例代码来跟踪特征点。在我的示例视频中,相机水平平移,将新的物体和风景引入视野,而之前的物体和风景移出视野。
我的问题是在相机平移场景时尝试识别新特征点时出现的。我在 video-step while 循环中使用“detectMinEigenFeatures”函数,以便在经过指定数量的帧后找到新的特征点。但是,以某种方式这样做对重新建立新的特征点没有任何帮助。
一些快速信息:使用 GoPro 视频,采样到 720p 并保存为 .avi
代码发布在下面,我很乐意提供更多信息来帮助理解或解决这个问题。
谢谢!
clc;clear all;close all;
videoFileReader = vision.VideoFileReader('GoProFlyingMidFlightResized.avi');
videoFrame = step(videoFileReader);
%Create Video writer
TrackingVideo = VideoWriter('TrackingVideo.avi');
open(TrackingVideo);
% Detect feature points
points = detectMinEigenFeatures(rgb2gray(videoFrame),'MinQuality',0.04,'FilterSize',3);
% points = detectMinEigenFeatures(rgb2gray(videoFrame));
% Create a point tracker
pointTracker = vision.PointTracker('NumPyramidLevels',7,'MaxBidirectionalError', 8, 'MaxIterations',70,'BlockSize',[5 5]);
% Initialize the tracker with the initial point locations and the initial
% video frame.
points = points.Location;
initialize(pointTracker, points, videoFrame);
videoPlayer = vision.VideoPlayer('Position',[100 100 [size(videoFrame, 2), size(videoFrame, 1)]+30]);
% Make a copy of the points for transformation between the consecutive feature points
oldPoints = points;
FrameCount=0; %For identifying that new feature points must be obtain
while ~isDone(videoFileReader)
% get the next frame
FrameCount=FrameCount+1;
videoFrame = step(videoFileReader);
if FrameCount==30 %If 30 frame have stepped though, find new feature points
disp('help')
points = detectMinEigenFeatures(rgb2gray(videoFrame),'MinQuality',0.04,'FilterSize',3);
points = points.Location;
FrameCount=0;
end
% Track the points.
[points, isFound] = step(pointTracker, videoFrame);
visiblePoints = points(isFound, :);
oldInliers = oldPoints(isFound, :);
if size(visiblePoints, 1) >= 2 % need at least 2 points
% Estimate the geometric transformation between the old points
% and the new points and eliminate outliers
[xform, oldInliers, visiblePoints] = estimateGeometricTransform(oldInliers, visiblePoints, 'similarity', 'MaxDistance', 10);
% Display tracked points
videoFrame = insertMarker(videoFrame, visiblePoints, '+','Color', 'red');
% Reset the points
oldPoints = visiblePoints;
setPoints(pointTracker, oldPoints);
end
% Display video frame using the video player
writeVideo(TrackingVideo,videoFrame);
step(videoPlayer, videoFrame);
end
% Clean up
release(videoFileReader);
release(videoPlayer);
release(pointTracker);
close(TrackingVideo);
【问题讨论】:
【参考方案1】:在 if 语句中检测新点:
if FrameCount==30 %If 30 frame have stepped though, find new feature points
disp('help')
points = detectMinEigenFeatures(rgb2gray(videoFrame),'MinQuality',0.04,'FilterSize',3);
points = points.Location;
FrameCount=0;
end
现在,在同一个 if
中,您必须告诉点跟踪器这些新点:
setPoints(tracker, points);
否则,您的变量 points
会被下一行覆盖:
[points, isFound] = step(pointTracker, videoFrame);
这就是为什么您永远看不到新检测到的点。
【讨论】:
感谢 Dima,这确实是问题所在。感谢您的帮助! 不客气。我很好奇,对于点跟踪器的'MaxBidirectionalError'
参数,8 是一个合理的值吗?你这样不会得到很多坏道吗?
确实我做到了,但这只是为了测试目的,让自己对这个特定视频的属性敏感度有一个很好的了解。我使用 2 进行实际测试。以上是关于使用 Matlab 的视觉函数重新建立新的特征点的主要内容,如果未能解决你的问题,请参考以下文章