卡尔曼滤波器基本应用/学习 - 代码似乎很慢
Posted
技术标签:
【中文标题】卡尔曼滤波器基本应用/学习 - 代码似乎很慢【英文标题】:Kalman filter basic application/learning - Code seems very slow 【发布时间】:2018-06-28 06:23:42 【问题描述】:我有一个旋转的平台和一个测量其位置的传感器,我尝试编写一个简单的卡尔曼滤波器来平滑测量。我的测量运行长度在 10000-15000 个数据点之间。模拟运行超过 3 分钟。
我预计代码会更快,因为卡尔曼用于实时应用程序。此外,我对测量所做的其他计算几乎不需要那么长时间,而且几乎是即时的。还是因为矩阵运算这是正常的?
我主要将此示例用作模板Kalman Filter Implementation for Constant Velocity Model (CV) in Python。下面是我的代码,也许有可能以不同的方式编写它以使其更快?
import numpy as np
import matplotlib.pyplot as plt
x = np.matrix([[0.0, 0.0]]).T # initial state vector x and x_point
P = np.diag([1.0, 1.0]) #!!! initial uncertainty
H = np.matrix([[1.0, 0.0]]) # Measurement matrix H
StD = 20 # Standard deviation of the sensor
R = StD**2 # Measurment Noise Covariance
sv = 2 # process noise basically through possible acceleration
I = np.eye(2) # Identity matrix
for n in range(len(df.loc[[name], ['Time Delta']])):
# Time Update (Prediction)
# ========================
# Update A and Q with correct timesteps
dt = float(df.loc[[name], ['Time Delta']].values[n])
A = np.matrix([[1.0, dt],
[0.0, 1.0]])
G = np.matrix([dt**2/2,dt]).T #!!! np.matrix([[dt**2/2], [dt]]) # Process Noise
Q = G*G.T*sv**2 # Process Noise Covariance Q
# Project the state ahead
x = A*x # not used + B*u
# Project the error covariance ahead
P = A*P*A.T + Q
# Measurement Update (Correction)
# ===============================
# Compute the Kalman Gain
S = H*P*H.T + R
K = (P*H.T) * S**-1 #!!! Use np.linalg.pinv(S) instead of S**-1 if S is a matrix
# Update the estimate via z
Z = df.loc[[name], ['HMC Az Relative']].values[n]
y = Z - (H*x)
x = x + (K*y)
# Update the error covariance
P = (I - (K*H))*P
【问题讨论】:
【参考方案1】:我找到了答案。
在 dt 和 Z 的 for 迭代中调用 pandas 的“地址”会使代码非常慢。我为 dt 和 z 数组创建了两个新变量,现在我的代码几乎是即时的。 PythonSpeedPerformanceTips 帮助我意识到我的问题出在哪里。此外,StackEchange Code Review 对于阅读本文并遇到类似问题的任何人来说都是一个更好的地方。
import numpy as np
import matplotlib.pyplot as plt
x = np.matrix([[0.0, 0.0]]).T # initial state vector x and x_point
P = np.diag([1.0, 1.0]) #!!! initial uncertainty
H = np.matrix([[1.0, 0.0]]) # Measurement matrix H
StD = 20 # Standard deviation of the sensor
R = StD**2 # Measurment Noise Covariance
sv = 2 # process noise basically through possible acceleration
I = np.eye(2) # Identity matrix
timesteps = df.loc[[name], ['Time Delta']].values
measurements = df.loc[[name], ['HMC Az Relative']].values
for n in range(len(df.loc[[name], ['Time Delta']])):
# Time Update (Prediction)
# ========================
# Update A and Q with correct timesteps
dt = timesteps[n]
A = np.matrix([[1.0, dt],
[0.0, 1.0]])
G = np.matrix([dt**2/2,dt]).T #!!! np.matrix([[dt**2/2], [dt]]) # Process Noise
Q = G*G.T*sv**2 # Process Noise Covariance Q
# Project the state ahead
x = A*x # not used + B*u
# Project the error covariance ahead
P = A*P*A.T + Q
# Measurement Update (Correction)
# ===============================
# Compute the Kalman Gain
S = H*P*H.T + R
K = (P*H.T) * S**-1 #!!! Use np.linalg.pinv(S) instead of S**-1 if S is a matrix
# Update the estimate via z
Z = measurements[n]
y = Z - (H*x)
x = x + (K*y)
# Update the error covariance
P = (I - (K*H))*P
【讨论】:
以上是关于卡尔曼滤波器基本应用/学习 - 代码似乎很慢的主要内容,如果未能解决你的问题,请参考以下文章
自动驾驶 9-1: (线性)卡尔曼滤波器The (Linear) Kalman Filter
自动驾驶 9-1: (线性)卡尔曼滤波器The (Linear) Kalman Filter