如何使用扩展卡尔曼滤波器组合来自两个传感器的数据,其中一个传感器比另一个更可靠?
Posted
技术标签:
【中文标题】如何使用扩展卡尔曼滤波器组合来自两个传感器的数据,其中一个传感器比另一个更可靠?【英文标题】:How do I combine data from two sensors using an extended Kalman filter where one of the sensors is more reliable than the other? 【发布时间】:2019-07-29 07:29:19 【问题描述】:我有两个传感器 A 和 B。我正在尝试使用扩展卡尔曼滤波器组合他们的传感器数据,以进行高效的数据分析。由于数据类型是非线性的,我使用的是扩展卡尔曼滤波器。在我的例子中,来自传感器 A 的数据总是可靠的,但是来自传感器 B 的数据的可靠性会随时间变化。例如,在t=0
,它的可靠性很高,可靠性逐渐(均匀地)下降,直到t=T
。在这种情况下,如何组合传感器数据以获得更好的优化结果?或者如何为传感器 B 的数据分配动态权重(t=0
到 t=T
)?
更新:我必须在 EKF 的预测阶段使用来自传感器 B 的数据。
【问题讨论】:
您需要一个函数来根据时间的变化计算传感器的可靠性。拥有一个,您可以为每个传感器设置测量协方差。看看***.com/questions/47599886/…。在这个实现中,有两个具有不同静态方差的传感器。您的情况几乎相同,但方差是时间的函数。 我不太明白您的更新声明。您的过滤器将只有一个测量值(对于传感器 A 和 B),并且测量值只有一个状态。过滤器甚至不知道有两个传感器,它唯一会看到的是一些测量值具有更高的方差。预测阶段根本不关心传感器。它仅取决于您的系统建模,最后取决于 F 和 Q 矩阵。 【参考方案1】:正如我在 cmets 中已经提到的,您可以通过输入方差来表达传感器的可靠性。传感器 A 的方差将保持不变,而传感器 B 的方差会随着时间的推移而增加。
过滤器不关心系统中有多少传感器。它只是对输入进行测量,就好像只有一个传感器一样。重要的是传达的差异。
这是一个带有两个加速度传感器的滤波器的简短 matlab 示例。状态空间由速度和加速度组成。传感器 A 在偶数调用时激活,传感器 B 在奇数调用时激活。
function [] = main()
dt = 0.01;
t=(0:dt:70)';
acc_ref = sin(0.3*t) + 0.5*sin(0.04*t);
accA_std = 0.05; % standard deviation for Sensor A
accB_std = 0.1 + 0.01*t; % standard deviation for Sensor B
accA = acc_ref + randn(size(t)).*accA_std;
accB = acc_ref + randn(size(t)).*accB_std;
n = numel(t);
% state matrix (velocity, acceleration)
X = zeros(2,1);
% covariance matrix
P = diag([0.1, 0.1]);
% system noise
Q = diag([1, 0.02]);
% transition matrix
F = [1, dt;
0, 1];
% observation matrix
H = [0 1];
% measurement noise
R = 0; % will be set depending on sensor A or B
% kalman filter output through the whole time
X_arr = zeros(n, 2);
% fusion
for i = 1:n
% use sensor A at even and B at odd calls
if (mod(i, 2))
y = accA(i);
R = accA_std^2; %set varaince of Sensor A as measurement noise
else
y = accB(i);
R = accB_std(i)^2; %set varaince of Sensor B as measurement noise
end
if (i == 1)
[X] = init_kalman(X, y); % initialize the state using the 1st sensor
else
[X, P] = prediction(X, P, Q, F);
[X, P] = update(X, P, y, R, H);
end
X_arr(i, :) = X;
end
figure;
plot(t, acc_ref, 'LineWidth', 2);
hold on;
plot(t, accA, 'LineWidth', 1);
plot(t, accB, 'LineWidth', 1);
plot(t, X_arr(:, 2), 'LineWidth', 2);
hold off;
grid on;
legend('Ground Truth', 'SensorA', 'SensorB', 'Estimation');
end
function [X] = init_kalman(X, y)
X(1) = 0;
X(2) = y;
end
function [X, P] = prediction(X, P, Q, F)
X = F*X;
P = F*P*F' + Q;
end
function [X, P] = update(X, P, y, R, H)
Inn = y - H*X;
S = H*P*H' + R;
K = P*H'/S;
X = X + K*Inn;
P = P - K*H*P;
end
结果如下:
如果您的系统在每次调用中同时处理两个传感器,您需要执行两次更新阶段:
for i = 1:n
y1 = accA(i);
R1 = accA_std^2; %set varaince of Sensor A as measurement noise
y2 = accB(i);
R2 = accB_std(i)^2; %set varaince of Sensor B as measurement noise
if (i == 1)
[X] = init_kalman(X, y1); % initialize the state using the 1st sensor
else
[X, P] = prediction(X, P, Q, F);
[X, P] = update(X, P, y1, R1, H); %Update for Sensor A
[X, P] = update(X, P, y2, R2, H); %Update for Sensor B
end
X_arr(i, :) = X;
end
结果会好一点,因为过滤器从测量中获得了更多信息:
【讨论】:
以上是关于如何使用扩展卡尔曼滤波器组合来自两个传感器的数据,其中一个传感器比另一个更可靠?的主要内容,如果未能解决你的问题,请参考以下文章
EKF定位基于传感器信息融合的EKF扩展卡尔曼滤波定位算法matlab仿真