Hadoop MapReduce 作业成功完成,但未向 DB 写入任何内容

Posted

技术标签:

【中文标题】Hadoop MapReduce 作业成功完成,但未向 DB 写入任何内容【英文标题】:Hadoop MapReduce job completes successfully but doesn't write anything to DB 【发布时间】:2015-02-28 17:09:50 【问题描述】:

我正在编写一个 MR 作业来挖掘网络服务器日志。作业的输入来自文本文件,输出到 mysql 数据库。问题是,作业成功完成,但没有向数据库写入任何内容。我已经有一段时间没有进行 MR 编程了,所以很可能是我找不到的错误。这不是模式匹配(见下文),我已经过单元测试并且工作正常。我错过了什么? Mac OS X, Oracle JDK 1.8.0_31, hadoop-2.6.0 注意:记录了异常,为简洁起见,我省略了它们。

可跳过的日志记录:

public class SkippableLogRecord implements WritableComparable<SkippableLogRecord> 
    // fields

    public SkippableLogRecord(Text line) 
        readLine(line.toString());
    
    private void readLine(String line) 
        Matcher m = PATTERN.matcher(line);

        boolean isMatchFound = m.matches() && m.groupCount() >= 5;

        if (isMatchFound) 
        try 
            jvm = new Text(m.group("jvm"));

            Calendar cal = getInstance();
            cal.setTime(new SimpleDateFormat(DATE_FORMAT).parse(m
            .group("date")));

            day = new IntWritable(cal.get(DAY_OF_MONTH));
            month = new IntWritable(cal.get(MONTH));
            year = new IntWritable(cal.get(YEAR));

            String p = decode(m.group("path"), UTF_8.name());

            root = new Text(p.substring(1, p.indexOf(FILE_SEPARATOR, 1)));
            filename = new Text(
            p.substring(p.lastIndexOf(FILE_SEPARATOR) + 1));
            path = new Text(p);

            status = new IntWritable(Integer.parseInt(m.group("status")));
            size = new LongWritable(Long.parseLong(m.group("size")));
         catch (ParseException | UnsupportedEncodingException e) 
            isMatchFound = false;
        
    

    public boolean isSkipped() 
        return jvm == null;
    

    @Override
    public void readFields(DataInput in) throws IOException 
        jvm.readFields(in);
        day.readFields(in);
        // more code
    
    @Override
    public void write(DataOutput out) throws IOException 
        jvm.write(out);
        day.write(out);
        // more code
    
    @Override
    public int compareTo(SkippableLogRecord other) ...
    @Override
    public boolean equals(Object obj) ...

映射器:

public class LogMapper extends
    Mapper<LongWritable, Text, SkippableLogRecord, NullWritable>     
    @Override
    protected void map(LongWritable key, Text line, Context context) 
        SkippableLogRecord rec = new SkippableLogRecord(line);

        if (!rec.isSkipped()) 
            try 
                context.write(rec, NullWritable.get());
             catch (IOException | InterruptedException e) ...
        
    

减速机:

public class LogReducer extends
    Reducer<SkippableLogRecord, NullWritable, DBRecord, NullWritable>     
    @Override
    protected void reduce(SkippableLogRecord rec,
        Iterable<NullWritable> values, Context context) 
        try 
            context.write(new DBRecord(rec), NullWritable.get());
         catch (IOException | InterruptedException e) ...
    

数据库记录:

public class DBRecord implements Writable, DBWritable 
    // fields

    public DBRecord(SkippableLogRecord logRecord) 
        jvm = logRecord.getJvm().toString();
        day = logRecord.getDay().get();
        // more code for rest of the fields
    

    @Override
    public void readFields(ResultSet rs) throws SQLException 
        jvm = rs.getString("jvm");
        day = rs.getInt("day");
        // more code for rest of the fields
    

    @Override
    public void write(PreparedStatement ps) throws SQLException 
        ps.setString(1, jvm);
        ps.setInt(2, day);
        // more code for rest of the fields
    

司机:

public class Driver extends Configured implements Tool 
    @Override
    public int run(String[] args) throws Exception 
        Configuration conf = getConf();

        DBConfiguration.configureDB(conf, "com.mysql.jdbc.Driver", // driver
        "jdbc:mysql://localhost:3306/aac", // db url
        "***", // user name
        "***"); // password

        Job job = Job.getInstance(conf, "log-miner");

        job.setJarByClass(getClass());
        job.setMapperClass(LogMapper.class);
        job.setReducerClass(LogReducer.class);
        job.setMapOutputKeyClass(SkippableLogRecord.class);
        job.setMapOutputValueClass(NullWritable.class);
        job.setOutputKeyClass(DBRecord.class);
        job.setOutputValueClass(NullWritable.class);
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(DBOutputFormat.class);

        FileInputFormat.setInputPaths(job, new Path(args[0]));

        DBOutputFormat.setOutput(job, "log", // table name
        new String[]  "jvm", "day", "month", "year", "root",
            "filename", "path", "status", "size"  // table columns
        );

        return job.waitForCompletion(true) ? 0 : 1;
    
    public static void main(String[] args) throws Exception 
        GenericOptionsParser parser = new GenericOptionsParser(
        new Configuration(), args);

        ToolRunner.run(new Driver(), parser.getRemainingArgs());
    

作业执行日志:

15/02/28 02:17:58 INFO mapreduce.Job:  map 100% reduce 100%
15/02/28 02:17:58 INFO mapreduce.Job: Job job_local166084441_0001 completed successfully
15/02/28 02:17:58 INFO mapreduce.Job: Counters: 35
    File System Counters
        FILE: Number of bytes read=37074
        FILE: Number of bytes written=805438
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=476788498
        HDFS: Number of bytes written=0
        HDFS: Number of read operations=11
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=0
    Map-Reduce Framework
        Map input records=482230
        Map output records=0
        Map output bytes=0
        Map output materialized bytes=12
        Input split bytes=210
        Combine input records=0
        Combine output records=0
        Reduce input groups=0
        Reduce shuffle bytes=12
        Reduce input records=0
        Reduce output records=0
        Spilled Records=0
        Shuffled Maps =2
        Failed Shuffles=0
        Merged Map outputs=2
        GC time elapsed (ms)=150
        Total committed heap usage (bytes)=1381498880
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=171283337
    File Output Format Counters 
        Bytes Written=0

【问题讨论】:

你试过不使用 Hadoop 吗?如果您的工作流程无法扩展,请仅将其用作最后的手段。摆脱内部循环中的所有new 调用——也没有新的Matcher。这些都是非常昂贵的。并且不要忽略异常...很可能,您只是无法解析每一行... @Anony-Mousse 正如我所说,解析之所以有效,是因为我对其进行了单元测试。异常并没有真正被忽略,为了简洁起见,我没有展示它们。最后,我想让程序先运行,然后再担心扩展。一个可以完美扩展但什么都不做的程序一文不值。 mapreduce 内部的单元测试,还是外部的其他数据类型?显然,您的地图产生 0 条记录!所以它必须跳过所有内容。此外,立即设计内存,而不是稍后再次重写......遵循最佳实践。例如,Text 存在是因为 String 太贵了,而 IntWritable 是一个可重复使用的 Integer @Anony-Mousse JUnit 测试将Text 发送到SkippableLogRecord 并验证是否获得了匹配项。阴性测试也。在这些测试中与 MR 或 Hadoop 无关,除了我使用 Text 数据类型。 例如,可能包括/不包括换行符。无论哪种方式,据我所知,您的台词都不匹配。 【参考方案1】:

回答我自己的问题,问题是导致匹配器失败的前导空格。单元测试没有使用前导空格进行测试,但实际日志由于某种原因有这些。 上面发布的代码的另一个问题是类中的所有字段都在readLine 方法中初始化。正如@Anony-Mousse 所提到的,这很昂贵,因为 Hadoop 数据类型被设计为可重用。这也导致了序列化和反序列化的更大问题。当 Hadoop 试图通过调用 readFields 来重构类时,它会导致 NPE,因为所有字段都是空的。 我还使用一些 Java 8 类和语法进行了其他小的改进。最后,即使我让它工作了,我还是使用 Spring Boot、Spring Data JPA 和 Spring 对异步处理的支持使用 @Async 重写了代码。

【讨论】:

以上是关于Hadoop MapReduce 作业成功完成,但未向 DB 写入任何内容的主要内容,如果未能解决你的问题,请参考以下文章

在 Hadoop 中链接多个 MapReduce 作业

在Hadoop中链接多个MapReduce作业

Hadoop MapReduce 一文详解MapReduce及工作机制

成功运行第一个MapReduce任务

如何在 Hadoop mapReduce 中获取 Kerberos 而不是委托令牌?

怎么在hadoop上部署mapreduce