规范化复杂的嵌套 JSON 文件

Posted

技术标签:

【中文标题】规范化复杂的嵌套 JSON 文件【英文标题】:Normalize a complex nested JSON file 【发布时间】:2020-04-02 05:32:37 【问题描述】:

我正在尝试将下面的 json 文件标准化为 4 个表 - “内容”、“模块”、“图像”和“另一个表中的其他所有内容”


    "id": "0000050a",
    "revision": 1580225050941,
    "slot": "product-description",
    "type": "E",
    "create_date": 1580225050941,
    "modified_date": 1580225050941,
    "creator": "Auto",
    "modifier": "Auto",
    "audit_info": 
        "date": 1580225050941,
        "source": "AutoService",
        "username": "Auto"
    ,
    "total_ID": 1,
    "name": "Auto_A1AM78C64UM0Y8_B07JCJR5HW",
    "content": [
        "ID": ["B01"],
        "content_revision": 1580225050941,
        "template": 
            "module": [
                "id": "module-11",
                "text": null,
                "header": [
                    "id": "title",
                    "value": null,
                    "decorators": []
                ],
                "paragraph": [
                    "id": "description",
                    "value": [],
                    "decorators": []
                ],
                "image": [
                    "id": "image",
                    "assetId": "/images/2cdabb786d10.jpg",
                    "alt": " ",
                    "viewLarger": null,
                    "styleCodes": "__CR0,0,970,300_PT0_SX970_V1__",
                    "src": "image.jpg",
                    "originalSrc": null
                ],
                "integer": null,
                "chart": null,
                "list": null,
                "video": null,
                "gallery": null,
                "composite": null,
                "collection": null,
                "product": null
            , 
                "id": "module-6",
                "text": null,
                "header": [
                    "id": "title1",
                    "value": "Dest ",
                    "decorators": []
                , 
                    "id": "title2",
                    "value": "cc",
                    "decorators": []
                , 
                    "id": "title3",
                    "value": "Col",
                    "decorators": []
                , 
                    "id": "title4",
                    "value": "C",
                    "decorators": []
                , 
                    "id": "caption1",
                    "value": null,
                    "decorators": []
                , 
                    "id": "caption2",
                    "value": null,
                    "decorators": []
                , 
                    "id": "caption3",
                    "value": null,
                    "decorators": []
                , 
                    "id": "caption4",
                    "value": null,
                    "decorators": []
                ],
                "paragraph": [
                    "id": "description1",
                    "value": [" Sport"],
                    "decorators": [
                        []
                    ]
                , 
                    "id": "description2",
                    "value": ["elements "],
                    "decorators": [
                        []
                    ]
                , 
                    "id": "description3",
                    "value": ["Film "],
                    "decorators": [
                        []
                    ]
                , 
                    "id": "description4",
                    "value": ["Our signature "],
                    "decorators": [
                        []
                    ]
                ],
                "image": [
                    "id": "image1",
                    "assetId": "/images/dbbfc9873e31.jpg",
                    "alt": " ",
                    "viewLarger": null,
                    "styleCodes": "__CR0,0,300,300_PT0_SX300_V1__",
                    "src": "image2_.jpg",
                    "originalSrc": null
                , 
                    "id": "image2",
                    "assetId": "/images/f577ae005.jpg",
                    "alt": " ",
                    "viewLarger": null,
                    "styleCodes": "__CR0,0,300,300_PT0_SX300_V1__",
                    "src": "test.jpg",
                    "originalSrc": null
                , 
                    "id": "image3",
                    "assetId": "/images/-0df21c5216d0.jpg",
                    "alt": " ",
                    "viewLarger": null,
                    "styleCodes": "__CR0,0,300,300_PT0_SX300_V1__",
                    "src": "image.jpg",
                    "originalSrc": null
                , 
                    "id": "image4",
                    "assetId": "/images/78d26b9c-408c-4299-8ea8-e9257f170320.jpg",
                    "alt": " ",
                    "viewLarger": null,
                    "styleCodes": "__CR0,0,300,300_PT0_SX300_V1__",
                    "src": "image.jpg",
                    "originalSrc": null
                , 
                    "id": "thumb1",
                    "assetId": "/images/-bbbfc9873e31.jpg",
                    "alt": " ",
                    "viewLarger": null,
                    "styleCodes": "__CR0,0,300,300_PT0_SX300_V1__",
                    "src": "image.jpg",
                    "originalSrc": null
                , 
                    "id": "thumb2",
                    "assetId": "/images/e56f577ae005.jpg",
                    "alt": " ",
                    "viewLarger": null,
                    "styleCodes": "__CR0,0,300,300_PT0_SX300_V1__",
                    "src": "image_.jpg",
                    "originalSrc": null
                , 
                    "id": "thumb3",
                    "assetId": "/images/0df21c5216d0.jpg",
                    "alt": " ",
                    "viewLarger": null,
                    "styleCodes": "__CR0,0,300,300_PT0_SX300_V1__",
                    "src": "image_.jpg",
                    "originalSrc": null
                , 
                    "id": "thumb4",
                    "assetId": "/images/-e9257f170320.jpg",
                    "alt": " ",
                    "viewLarger": null,
                    "styleCodes": "__CR0,0,300,300_PT0_SX300_V1__",
                    "src": "image.jpg",
                    "originalSrc": null
                ],
                "integer": null,
                "chart": null,
                "list": null,
                "video": null,
                "gallery": null,
                "composite": null,
                "collection": null,
                "product": null
            ],
            "renderType": "VERTICAL"
        ,
        "locale_data": 
            "locale": "en_US",
            "identified_by": "MACHINE_DETECT"
        
    ],
    "badges": []

我可以成功地将 JSON 扁平化为一个大数据帧,并将标头作为 JSON 路径。但我想将 JSON 规范化为单独的表。例如,模块表应该有 IDTextHeader_IDHeader_Value 等列。 Image 表应该有Image_IDAssest_IDSrc 等列。谁能帮我将此 JSON 规范化为 4 个表。

【问题讨论】:

查看jmespath 或glom 以获取有关如何使用嵌套数据的指导。 【参考方案1】:

你可以使用https://towardsdatascience.com/flattening-json-objects-in-python-f5343c794b10定义的函数,如下,然后使用json_normalize

import pandas as pd
import json
with open('test.json') as json_file:
    data = json.load(json_file)

def flatten_json(y):
    out = 

    def flatten(x, name=''):
        if type(x) is dict:
            for a in x:
                flatten(x[a], name + a + '_')
        elif type(x) is list:
            i = 0
            for a in x:
                flatten(a, name + str(i) + '_')
                i += 1
        else:
            out[name[:-1]] = x

    flatten(y)
    return out

module =  flatten_json(data["content"][0])
module = pd.json_normalize(module)

然后,您要做的就是根据您描述的四个类别选择列。 输出是:

ID_0  content_revision  ... locale_data_locale locale_data_identified_by
0  B01     1580225050941  ...              en_US            MACHINE_DETECT

然后您选择如下,例如为您的模块和图像 DataFrames:

module = df.loc[:,df.columns.str.contains("module")]
image = df.loc[:,df.columns.str.contains("image")]

例如你得到的模块结果是:

template_module_0_id  ... template_module_1_product
0            module-11  ...                      None

然后,我给出模块DataFrame转换的例子,你只有两个模块,所以你可以在重命名列后做一个concat

module1 = module.loc[:,module.columns.str.contains("module_0")]
module1.columns = module1.columns.str.replace("_0","")
module2 = module.loc[:,module.columns.str.contains("module_1")]
module2.columns = module2.columns.str.replace("_1","")
modules = pd.concat([module1,
                     module2])

你会得到:

 template_module_id  ... template_module_image_7_originalSrc
0          module-11  ...                                 NaN
0           module-6  ...                                None

如果您有更多元素,另一个选择是直接在您想要的嵌套元素上使用 flatten_jsonjson_normalize 函数。

【讨论】:

感谢拉斐尔·阿杰拉德。我确实使用了 flatten 功能。我有很多 JSON 文件要处理,模块和图像的数量可能会有所不同。所以我试图以递归方式执行此操作,并针对任何级别的嵌套 JSON。

以上是关于规范化复杂的嵌套 JSON 文件的主要内容,如果未能解决你的问题,请参考以下文章

在python中规范化复杂的Json

如何使用 json_normalize 规范化嵌套的 json

用嵌套列表和嵌套字典列表展平一个非常大的 Json

使用不同的键规范化嵌套的 json

嵌套的JsonObject与JSONArray的取值---JSON中嵌套JSONArray

规范化/展平非常深的嵌套 JSON(其中名称和属性在各个级别中相同)