pyspark 按相应条件过滤行
Posted
技术标签:
【中文标题】pyspark 按相应条件过滤行【英文标题】:pyspark filtering rows by corresponding condition 【发布时间】:2021-11-11 17:12:02 【问题描述】:假设我有两张桌子:
df_1:
| condition | date |
| -------- | -------------- |
| A | 2018-01-01 |
| A | 2018-01-02 |
| A | 2018-01-03 |
| B | 2018-04-04 |
| B | 2018-04-05 |
| B | 2018-04-06 |
df_2:
| condition | date |
| -------- | -------------- |
| A | 2018-01-01 |
| B | 2018-04-05 |
我想按表 2 中的日期过滤表 1,这样我只保留 df_1 的条目,即日期大于其在 df_2 中的相应日期,这是预期的输出:
| condition | date |
| -------- | -------------- |
| A | 2018-01-02 |
| A | 2018-01-03 |
| B | 2018-04-06 |
在 pandas 中执行此操作的一种方法是遍历 df_2 中的行
all_dfs=[]
for idx,row in df_2.iterrows():
filtered_df = df_1[(df_1['condition']==row['condition'])&(df_1['date']>row['date'])]
all_dfs.append(filtered_df)
final_df = pd.concat(all_dfs, axis=0)
如何在不涉及 for 循环的 pyspark 中执行此操作?
【问题讨论】:
使用左反连接:df_1.join(df_2, (df_1['condition'] == df_2['condition']) & (df_1['date'] <= df_2['date']), "left_anti")
anti join
将失败是df_1
有行`C | 2018-01-01. Basically when the condition is not present in
df_2` 将包含在结果中。 left_semi
与 OP 的 pandas 代码行为相同
【参考方案1】:
Spark 有 left_semi
加入这个用例。
示例
from pyspark.sql.types import *
from pyspark.sql import Row
from datetime import datetime
schema = StructType([StructField('condition', StringType()), StructField('date',DateType())])
df_1_rows = [Row("A", datetime.strptime("2018-01-01", "%Y-%m-%d")),Row("A", datetime.strptime("2018-01-02", "%Y-%m-%d")),Row("A", datetime.strptime("2018-01-03", "%Y-%m-%d")),Row("B", datetime.strptime("2018-04-04", "%Y-%m-%d")),Row("B", datetime.strptime("2018-04-05", "%Y-%m-%d")),Row("B", datetime.strptime("2018-04-06", "%Y-%m-%d")),]
df_1 = spark.createDataFrame(df_1_rows, schema)
df_2_rows = [Row("A", datetime.strptime("2018-01-01", "%Y-%m-%d")),Row("B", datetime.strptime("2018-04-05", "%Y-%m-%d"))]
df_2 = spark.createDataFrame(df_2_rows, schema)
df_1.join(df_2, (df_1['condition'] == df_2['condition']) & (df_1['date'] > df_2['date']), "left_semi").show()
输出
+---------+----------+
|condition| date|
+---------+----------+
| A|2018-01-02|
| A|2018-01-03|
| B|2018-04-06|
+---------+----------+
【讨论】:
以上是关于pyspark 按相应条件过滤行的主要内容,如果未能解决你的问题,请参考以下文章