PySpark 无法计算 Koalas DataFrame 中的按列标准差

Posted

技术标签:

【中文标题】PySpark 无法计算 Koalas DataFrame 中的按列标准差【英文标题】:PySpark Cannot calculate column wise standard deviation in Koalas DataFrame 【发布时间】:2019-11-07 22:42:32 【问题描述】:

我在 PySpark 中有一个考拉数据框。我想计算按列的标准差。我试过做:

df2['x_std'] = df2[['x_1',
'x_2',
'x_3',
'x_4',
'x_5',
'x_6',
'x_7',
'x_8',
'x_9',
'x_10','x_11',
'x_12']].std(axis = 1) 

我收到以下错误:

TypeError: 'DataFrame' object does not support item assignment

我也在做类似的事情:

d1 = df2[['x_1',
'x_2',
'x_3',
'x_4',
'x_5',
'x_6',
'x_7',
'x_8',
'x_9',
'x_10','x_11',
'x_12']].std(axis = 1) 

df2['x_std'] = d1 # d1 is a Koalas Series that should get assigned to the new column.

执行此操作时出现此错误:

Cannot combine column argument because it comes from a different dataframe

对考拉来说完全陌生。任何人都可以提供一些想法吗?谢谢。

【问题讨论】:

【参考方案1】:

您可以将选项"compute.ops_on_diff_frames"设置为True,然后执行操作。

import databricks.koalas as ks

ks.set_option("compute.ops_on_diff_frames", True)

kdf = ks.DataFrame(
    'a': [1, 2, 3, 4, 5, 6],
     'b': [2, 1, 7, 4, 2, 3],
     'c': [3, 7, 1, 4, 6, 5],
     'd': [4, 2, 3, 4, 3, 8],,)

kdf['dev'] = kdf[['a', 'b', 'c', 'd']].std(axis=1)
print (kdf)

   a  b  c  d       dev
0  1  2  3  4  1.241909
5  6  3  5  8  2.363684
1  2  1  7  2  2.348840
3  4  4  4  4  1.788854
2  3  7  1  3  2.223378
4  5  2  6  3  1.856200

不确定是good practice,因为默认情况下不允许。

【讨论】:

以上是关于PySpark 无法计算 Koalas DataFrame 中的按列标准差的主要内容,如果未能解决你的问题,请参考以下文章

开窗函数之累积和,PySpark,Pandas和SQL版实现

pyspark.sql.DataFrame与pandas.DataFrame之间的相互转换

pyspark.sql.DataFrame与pandas.DataFrame之间的相互转换

AWS Glue PySpark 无法计算记录

具有数百万条记录的 2 个数据帧之间的 Pyspark 交叉连接

快讯!Koalas-RPC框架捐赠到dromara社区