如何在 pyspark 中使用 MultiClassMetrics 计算 f 分数?
Posted
技术标签:
【中文标题】如何在 pyspark 中使用 MultiClassMetrics 计算 f 分数?【英文标题】:How to calculate the f-score using MultiClassMetrics in pyspark? 【发布时间】:2017-01-17 21:31:55 【问题描述】:正如我在 pyspark 文档中看到的,fmeasure()
函数接受两个参数,它们是 label
和 beta
:
fMeasure(label=None, beta=None)
这里的测试版是什么?
我正在使用一个非常简单的数据集,例如 RDD: (它在数据框中,但我将其转换为 RDD)
+----------+-----+
|prediction|label|
+----------+-----+
| 1| 1|
| 1| 1|
| 0| 1|
| 0| 0|
| 1| 0|
| 1| 0|
| 0| 0|
| 0| 0|
| 1| 1|
| 1| 1|
+----------+-----+
当我运行这个命令时:
multi_metrics = MulticlassMetrics(rdd)
print 'fMeasure: ', multi_metrics.fMeasure(1)
我收到此错误:
print 'fMeasure: ', multi_metrics.fMeasure(1)
File "/usr/hdp/current/spark-client/python/pyspark/mllib/evaluation.py", line 259, in fMeasure
return self.call("fMeasure", label)
File "/usr/hdp/current/spark-client/python/pyspark/mllib/common.py", line 146, in call
return callJavaFunc(self._sc, getattr(self._java_model, name), *a)
File "/usr/hdp/current/spark-client/python/pyspark/mllib/common.py", line 123, in callJavaFunc
return _java2py(sc, func(*args))
File "/usr/hdp/current/spark-client/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py", line 813, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "/usr/hdp/current/spark-client/python/pyspark/sql/utils.py", line 45, in deco
return f(*a, **kw)
File "/usr/hdp/current/spark-client/python/lib/py4j-0.9-src.zip/py4j/protocol.py", line 312, in get_return_value
format(target_id, ".", name, value))
Py4JError: An error occurred while calling o154.fMeasure. Trace:
py4j.Py4JException: Method fMeasure([class java.lang.Integer]) does not exist
at py4j.reflection.ReflectionEngine.getMethod(ReflectionEngine.java:335)
at py4j.reflection.ReflectionEngine.getMethod(ReflectionEngine.java:344)
at py4j.Gateway.invoke(Gateway.java:252)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:209)
at java.lang.Thread.run(Thread.java:745)
【问题讨论】:
【参考方案1】:这里的测试版是什么?
Spark 的MulticlassMetrics
实现了$F_\beta$-measure,如果您将$\beta$ = 1,这与传统的F-measure 一致。$\beta$ 参数允许control relative contributions of precision vs recall in F-measure。
关于错误:如果您查看实现,它实际上需要 Double
。这是 fMeasure 方法的 pyspark 包装器,这是实际的 implementation(在 Scala 中)。
所以你应该这样称呼它,例如:
multi_metrics = MulticlassMetrics(rdd)
print 'fMeasure: ', multi_metrics.fMeasure(1.0,1.0)
【讨论】:
以上是关于如何在 pyspark 中使用 MultiClassMetrics 计算 f 分数?的主要内容,如果未能解决你的问题,请参考以下文章
如何在 Databricks 的 PySpark 中使用在 Scala 中创建的 DataFrame
如何在 Pyspark 中使用 groupby 和数组元素?