nvidia-docker 中的 TensorFlow:对 cuInit 的调用失败:CUDA_ERROR_UNKNOWN

Posted

技术标签:

【中文标题】nvidia-docker 中的 TensorFlow:对 cuInit 的调用失败:CUDA_ERROR_UNKNOWN【英文标题】:TensorFlow in nvidia-docker: failed call to cuInit: CUDA_ERROR_UNKNOWN 【发布时间】:2017-10-14 23:46:21 【问题描述】:

我一直在努力让一个依赖 TensorFlow 的应用程序作为具有 nvidia-docker 的 docker 容器工作。我已经在tensorflow/tensorflow:latest-gpu-py3 图像之上编译了我的应用程序。我使用以下命令运行我的 docker 容器:

sudo nvidia-docker run -d -p 9090:9090 -v /src/weights:/weights myname/myrepo:mylabel

通过portainer 查看日志时,我看到以下内容:

2017-05-16 03:41:47.715682: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-05-16 03:41:47.715896: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-05-16 03:41:47.715948: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-05-16 03:41:47.715978: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-05-16 03:41:47.716002: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2017-05-16 03:41:47.718076: E tensorflow/stream_executor/cuda/cuda_driver.cc:405] failed call to cuInit: CUDA_ERROR_UNKNOWN
2017-05-16 03:41:47.718177: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:158] retrieving CUDA diagnostic information for host: 1e22bdaf82f1
2017-05-16 03:41:47.718216: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:165] hostname: 1e22bdaf82f1
2017-05-16 03:41:47.718298: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:189] libcuda reported version is: 367.57.0
2017-05-16 03:41:47.718398: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:369] driver version file contents: """NVRM version: NVIDIA UNIX x86_64 Kernel Module  367.57  Mon Oct  3 20:37:01 PDT 2016
GCC version:  gcc version 4.8.4 (Ubuntu 4.8.4-2ubuntu1~14.04.3) 
"""
2017-05-16 03:41:47.718455: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:193] kernel reported version is: 367.57.0
2017-05-16 03:41:47.718484: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:300] kernel version seems to match DSO: 367.57.0

容器似乎可以正常启动,并且我的应用程序似乎正在运行。当我向它发送预测请求时,预测会正确返回 - 但是在 CPU 上运行推理时速度会很慢,所以我认为很明显 GPU 出于某种原因没有被使用。我还尝试在同一个容器中运行nvidia-smi,以确保它看到我的 GPU,结果如下:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 367.57                 Driver Version: 367.57                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GRID K1             Off  | 0000:00:07.0     Off |                  N/A |
| N/A   28C    P8     7W /  31W |     25MiB /  4036MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+

我当然不是这方面的专家——但从容器内部看来,GPU 确实是可见的。关于如何使用 TensorFlow 进行此操作的任何想法?

【问题讨论】:

有趣的是,答案再简单不过了:我重新启动了主机,现在一切正常!我不记得安装任何更新,所以我认为没有必要重新启动,但确实如此! 重启完成了这项工作,谢谢。 系统重启对我有用 【参考方案1】:

我在我的 ubuntu16.04 桌面上运行 tensorflow。

我在几天前使用 GPU 运行代码运行良好。 但是今天我找不到下面代码的gpu设备

import tensorflow as tf from tensorflow.python.client import device_lib as _device_lib with tf.Session() as sess: local_device_protos = _device_lib.list_local_devices() print(local_device_protos) [print(x.name) for x in local_device_protos]

当我运行tf.Session()时,我意识到了以下问题

cuda_driver.cc:406] 调用 cuInit 失败:CUDA_ERROR_UNKNOWN

我在系统详细信息中检查了我的 Nvidia 驱动程序,nvcc -Vnvida-smi 检查驱动程序、cuda 和 cudnn。一切似乎都很好。

然后我去Additional Drivers查看驱动详情,我发现NVIDIA驱动有很多版本,并且选择了最新版本。但是当我第一次安装驱动时,只有一个。

所以我选择了一个旧版本,并应用更改。

然后我运行tf.Session() 问题也在这里。我想我应该重启我的电脑,重启后这个问题就消失了。

sess = tf.Session() 2018-07-01 12:02:41.336648: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA 2018-07-01 12:02:41.464166: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:898] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2018-07-01 12:02:41.464482: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1356] Found device 0 with properties: name: GeForce GTX 1070 major: 6 minor: 1 memoryClockRate(GHz): 1.8225 pciBusID: 0000:01:00.0 totalMemory: 7.93GiB freeMemory: 7.27GiB 2018-07-01 12:02:41.464494: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1435] Adding visible gpu devices: 0 2018-07-01 12:02:42.308689: I tensorflow/core/common_runtime/gpu/gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix: 2018-07-01 12:02:42.308721: I tensorflow/core/common_runtime/gpu/gpu_device.cc:929] 0 2018-07-01 12:02:42.308729: I tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 0: N 2018-07-01 12:02:42.309686: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 7022 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability:

【讨论】:

【参考方案2】:

也许问题与由 GPU 创建的 JIT 缓存文件权限有关。 在 linux 上,默认情况下,缓存文件是在 ~/.nv/ComputeCache 中创建的。 为JIT cache 设置另一个目录可以解决问题。做吧

export CUDA_CACHE_PATH=/tmp/nvidia

在 GPU 上运行之前。

【讨论】:

【参考方案3】:

我尝试安装 nvidia-modrpobe,但仍然出现同样的错误。 然后一个简单的系统重启对我有用

【讨论】:

【参考方案4】:

在我的例子中,这个命令失败了:

docker run --gpus all --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu \                                                                                                                                                     
   python -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

添加--privileged即可解决问题:

docker run --gpus all --runtime=nvidia --privileged -it --rm tensorflow/tensorflow:latest-gpu \                                                                                                                                                     
   python -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

【讨论】:

以上是关于nvidia-docker 中的 TensorFlow:对 cuInit 的调用失败:CUDA_ERROR_UNKNOWN的主要内容,如果未能解决你的问题,请参考以下文章

安装 Docker 和 nvidia-docker2

安装 Docker 和 nvidia-docker2

安装使用NVIDIA-Docker-- 可使用GPU的Docker容器

ubuntu20.04如何安装nvidia-docker?

ubuntu20.04如何安装nvidia-docker?

可以在没有 GPU 的情况下运行 nvidia-docker 吗?