理解和优化 pyCUDA 中的线程、块和网格
Posted
技术标签:
【中文标题】理解和优化 pyCUDA 中的线程、块和网格【英文标题】:Understanding and optimising threads, blocks, and grids in pyCUDA 【发布时间】:2017-06-04 05:35:09 【问题描述】:我对 GPU 编程和 pyCUDA 非常陌生,并且在我的知识上存在相当大的差距。我花了很多时间搜索 SO,查看示例代码并阅读 CUDA/pyCUDA 的支持文档,但在解释中没有发现太多的多样性,并且无法理解一些事情。
我无法正确定义块和网格尺寸。我目前正在运行的代码如下,旨在将数组a
乘以浮点数b
:
from __future__ import division
import pycuda.gpuarray as gpuarray
import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule
import numpy as np
rows = 256
cols = 10
a = np.ones((rows, cols), dtype=np.float32)
a_gpu = cuda.mem_alloc(a.nbytes)
cuda.memcpy_htod(a_gpu, a)
b = np.float32(2)
mod = SourceModule("""
__global__ void MatMult(float *a, float b)
const int i = threadIdx.x + blockDim.x * blockIdx.x;
const int j = threadIdx.y + blockDim.y * blockIdx.y;
int Idx = i + j*gridDim.x;
a[Idx] *= b;
""")
func = mod.get_function("MatMult")
xBlock = np.int32(np.floor(1024/rows))
yBlock = np.int32(cols)
bdim = (xBlock, yBlock, 1)
dx, mx = divmod(rows, bdim[0])
dy, my = divmod(cols, bdim[1])
gdim = ( (dx + (mx>0)) * bdim[0], (dy + (my>0)) * bdim[1])
print "bdim=",bdim, ", gdim=", gdim
func(a_gpu, b, block=bdim, grid=gdim)
a_doubled = np.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)
print a_doubled - 2*a
代码应打印块尺寸bdim
和网格尺寸gdim
,以及一个零数组。
这适用于较小的数组大小,例如,如果 rows=256
和 cols=10
(如上例所示)输出如下:
bdim= (4, 10, 1) , gdim= (256, 10)
[[ 0. 0. 0. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 0. 0. 0.]
...,
[ 0. 0. 0. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 0. 0. 0.]]
但是,如果我增加rows=512
,我会得到以下输出:
bdim= (2, 10, 1) , gdim= (512, 10)
[[ 0. 0. 0. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 0. 0. 0.]
...,
[ 2. 2. 2. ..., 2. 2. 2.]
[ 2. 2. 2. ..., 2. 2. 2.]
[ 2. 2. 2. ..., 2. 2. 2.]]
表示对于数组的某些元素,乘法发生了两次。
但是,如果我将块尺寸强制为 bdim = (1,1,1)
,则问题不再出现,并且对于较大的数组大小,我得到以下(正确)输出:
bdim= (1, 1, 1) , gdim= (512, 10)
[[ 0. 0. 0. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 0. 0. 0.]
...,
[ 0. 0. 0. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 0. 0. 0.]]
我不明白这一点。这里发生了什么,这意味着随着数组大小的增加,这种定义块和网格尺寸的方法不再合适?另外,如果块的尺寸为(1,1,1),这是否意味着计算正在串行执行?
提前感谢您的任何指点和帮助!
【问题讨论】:
【参考方案1】:您在 2D 块的 2D 网格上进行操作。在您的内核中,您似乎假设gridDim.x
将返回网格的x
维度中的线程数。
__global__ void MatMult(float *a, float b)
const int i = threadIdx.x + blockDim.x * blockIdx.x;
const int j = threadIdx.y + blockDim.y * blockIdx.y;
int Idx = i + j*gridDim.x;
a[Idx] *= b;
gridDim.x
返回块数 r x
网格方向,而不是线程数。为了获得给定方向的线程数,您应该将块中的线程数乘以同一方向的网格中的块数:
int Idx = i + j * blockDim.x * gridDim.x
【讨论】:
非常感谢您的回答。我想我的下一个问题是:有没有办法对所有数组形状进行概括?您在上面给出的解决方案非常有用,并且允许我使用更大的数组,但是如果我不断增加数组大小,我仍然会遇到同样的问题。另外,每个块中的线程是并行运行的,而每个块是串行运行的,还是网格中的每个块都是并行运行的?例如,(1,1,1) 的块形状会导致计算按顺序进行吗? 很高兴我能帮上忙,@FeeJF。我建议您阅读 this answer 和 this answer 并将其应用于您的解决方案。 太好了,非常感谢。除了链接之外,我应该能够取得相当大的进展并开始了解我在这里做什么!以上是关于理解和优化 pyCUDA 中的线程、块和网格的主要内容,如果未能解决你的问题,请参考以下文章