我想拆分数据并按行和列获取值

Posted

技术标签:

【中文标题】我想拆分数据并按行和列获取值【英文标题】:I want to split the data and get value by rows and columns 【发布时间】:2019-11-04 20:51:02 【问题描述】:

我想将数据集与行和列一起拆分,将数据集拆分为 80:20% 的比例,其中 80% 是训练数据,20% 是测试数据。但我可以将数据集分成 80%,但不能分成 20%。

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

city_attributes = pd.read_csv('./input/city_attributes.csv')
humidity = pd.read_csv('./input/humidity.csv')
pressure = pd.read_csv('./input/pressure.csv')
temperature = pd.read_csv('./input/temperature.csv')
weather_description = pd.read_csv('./input/weather_description.csv')
wind_direction = pd.read_csv('./input/wind_direction.csv')
wind_speed = pd.read_csv('./input/wind_speed.csv')

# we can reshape these using pd.melt
humidity = pd.melt(humidity, id_vars = ['datetime'], value_name = 'humidity', var_name = 'City')
pressure = pd.melt(pressure, id_vars = ['datetime'], value_name = 'pressure', var_name = 'City')
temperature = pd.melt(temperature, id_vars = ['datetime'], value_name = 'temperature', var_name = 'City')
weather_description = pd.melt(weather_description, id_vars = ['datetime'], value_name = 'weather_description', var_name = 'City')
wind_direction = pd.melt(wind_direction, id_vars = ['datetime'], value_name = 'wind_direction', var_name = 'City')
wind_speed = pd.melt(wind_speed, id_vars = ['datetime'], value_name = 'wind_speed', var_name = 'City')

# combine all of the dataframes created above 
weather = pd.concat([humidity, pressure, temperature, wind_direction, wind_speed, weather_description], axis = 1)
weather = weather.loc[:,~weather.columns.duplicated()] # indexing: every row, only the columns that aren't duplicates

# now we can merge this with the city attributes
weather = pd.merge(city_attributes,weather, on = 'City')
weather = weather.dropna()

first = pd.DataFrame()
rest = pd.DataFrame()

total_size = weather.shape[0]
train_size = 1277055
test_size = 319264

if len(weather) > train_size: 
   first = weather[:1277055]
   rest = weather[319264:]

print(rest)

test data output

train data output

【问题讨论】:

您得到什么错误或意外结果?您导入了 train_test_split 但未使用。该功能应该完全满足您的需求。 通过使用train_test_split 数据可以按列划分,不能按行划分,我已经测试过了。 【参考方案1】:

目前你的代码是

train_size = 1277055
test_size = 319264

if len(weather) > train_size: 
    first = weather[:1277055]
    rest = weather[319264:]

将 rest 定义为第 319264 行之后的所有行,而 first 正确地是前 1277055 行。也许你想要

train_size = 1277055
test_size = 319264

if len(weather) > (train_size + test_size): 
    first = weather.iloc[:train_size, :] 
    rest = weather.iloc[(train_size + 1):(train_size + test_size + 1), :] # same as weather[1277056:1596320, :]

或者使用 sklearn 的 train_test_split:

train_size = 1277055
test_size = 319264
train_idx, test_idx = train_test_split(weather.index, train_size = train_size , test_size = test_size )

df_train = weather.iloc[train_idx, :]
df_test = weather.iloc[test_idx, :]

示例用法:

In [1]: import numpy as np
   ...: import pandas as pd
   ...: train_size = 1277055
   ...: test_size = 319264
   ...: weather = pd.DataFrame(np.random.randint(0,100,size=(train_size+test_size, 4)), columns=list('ABCD'))
   ...: print(weather.head())
    A   B   C   D
0  13  91  68  35
1  52  30  52  59
2  16  22  73  24
3  62  86  27  96
4  88  54  23   4

In [2]: if len(weather) >= (train_size + test_size):
   ...:     print('subsetting')
   ...:     first = weather.iloc[:train_size, :]
   ...:     rest = weather.iloc[(train_size + 1):(train_size + test_size + 1), :]
   ...: 
   ...:     print(first.shape)
   ...:     print(rest.shape)
   ...: 
subsetting
(1277055, 4)
(319263, 4)

【讨论】:

对于您提到的第一个结果,我得到以下输出 Empty DataFrame Columns: [] Index: [] 您能告诉我您使用了两个提议的版本中的哪一个吗?另外,您是否在原始代码中插入了代码,替换了if len(weather)... 块? 我用过这个,是的,我已经在原始代码中插入了代码,可能需要先在这里进行一些更正 = pd.DataFrame() rest = pd.DataFrame() if len(weather) > (train_size + test_size): 好的,作为旁注,请记住` first = pd.DataFrame() rest = pd.DataFrame() ` 不是必需的,因为天气 df 的子集返回不同的 df 对象。您的天气 df 的总大小是多少? 你确定天气 df 至少有 (train_size + test_size) 行吗? weather.shape 的输出是什么?【参考方案2】:

要在位置 x 处拆分数组,请使用

left  = array[:x]
right = array[x:]

相同 x。因为x 是一个位置,而不是一个计数。

【讨论】:

以上是关于我想拆分数据并按行和列获取值的主要内容,如果未能解决你的问题,请参考以下文章

按行和列排序的显示表[重复]

Linux查看文件总的数据行数,并按行拆分

对矩阵按行和按列进行排序

如何从 MS ACCESS 数据库中的特定行和列中获取值?

如何使用行和列以圆形方式表示数据

需要将列拆分为行和列