计算每月/每周级别的相关性
Posted
技术标签:
【中文标题】计算每月/每周级别的相关性【英文标题】:Calculate correlation on a monthly/weekly level 【发布时间】:2021-11-09 18:39:48 【问题描述】:我在计算不同国家/地区每月/每周电价之间的相关系数时遇到问题。数据集 (https://github.com/Argiro1983/prices_df.git) 如下所示:
prices_df<-structure(list(DATETIME = structure(c(1609459200, 1609462800,
1609466400, 1609470000, 1609473600, 1609477200, 1609480800, 1609484400,
1609488000, 1609491600), class = c("POSIXct", "POSIXt"), tzone = "UTC"),
GR = c(50.87, 48.19, 44.68, 42.92, 40.39, 20.96, 39.63, 40.1,
20, 40.74), IT = c(50.87, 48.19, 44.68, 42.92, 40.39, 40.2,
39.63, 40.09, 41.27, 41.67), BG = c(49.95, 48.05, 49.62,
46.73, 45.39, 44.25, 36.34, 19.97, 20, 20.43), HU = c(45.54,
41.59, 40.05, 36.9, 34.47, 32.82, 27.7, 15, 8.43, 20.77),
TR = c(26.31, 24.06, 24.21, 23.2, 23.2, 26.31, 24.98, 26.31,
24.04, 26.31), SR = c(38.89, 34.86, 33.62, 28.25, 29.03,
29.22, 29.71, 1.08, 1.1, 36.07)), row.names = c(NA, 10L), class = "data.frame")
我已尝试将其转换为 xts 并按如下方式使用 apply.monthly(或 apply.weekly),但它不起作用。
library(xts)
SEE_prices <- xts(x = prices_df, order.by = DATETIME)
storage.mode(SEE_prices) <- "numeric"
SEE_prices <- na.locf(SEE_prices)
library(tidyverse)
library(tidyquant)
apply.monthly(SEE_prices, cor(SEE_prices$GR, SEE_prices$SR))
我尝试获得每周级别相关性的另一种方法是使用 dplyr 包,但它也不起作用:
library(lubridate)
library(magrittr)
library(dplyr)
prices_df %<>% mutate( DATETIME = ymd_hms(DATETIME) )
table1<- prices_df %>% group_by( year( DATETIME ), isoweek( DATETIME ) ) %>%
summarise( DateCount = n_distinct(date(DATETIME)), correlation = cor(prices_df$GR, prices_df$SR))
有人知道如何计算数据集的每周/每月相关性吗? 提前谢谢你。
【问题讨论】:
【参考方案1】:不要在dplyr
管道中使用$
。计算相关性尝试 -
library(dplyr)
library(lubridate)
prices_df %>%
mutate(DATETIME = ymd_hms(DATETIME),
year = year(DATETIME), week = isoweek(DATETIME)) %>%
group_by(year, week) %>%
summarise(DateCount = n_distinct(date(DATETIME)),
correlation = cor(GR, SR), .groups = 'drop')
【讨论】:
不幸的是,这会计算整个时期的相关性,它确实会产生每周的相关系数。 你这是什么意思?您在样本中只有一个时期的数据。您能否添加 2-3 个周期的数据并显示其预期输出,以便我可以将输出与我的答案进行比较? 这是完整的数据集:github.com/Argiro1983/prices_df.git。当我运行你的代码时,它只返回整个时期的相关系数。 你是否加载了plyr
来屏蔽 summarise
函数?尝试使用dplyr::summarise
而不是只使用summarise
。
成功了!非常感谢您的帮助。以上是关于计算每月/每周级别的相关性的主要内容,如果未能解决你的问题,请参考以下文章
猫鼬日期比较没有时间和按createdAt和staffId分组,每周、每月和每年按聚合计算的员工总数?
python使用statsmodels包中的tsa.acf函数计算时间序列数据所有滞后位置个数(级别)的自相关性tsaplots函数可视化时间序列数据所有滞后位置个数(级别)的自相关性